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DE - SITTER REPRESENTATIONS AND THE PARTICLE CONCEPT,
STUDIED IN AN UR-THEORETICAL COSMOLOGICAL MODELX)

Th. Gérnitz and C. F. v. Weizsidcker
Arbeitsgruppe Afheldfin der Max - Planck - Gesellschaft
Bahnhofplatz 4, D - 8130 Starnberg, Germany

Abstract: The theory of urs (basic two-valued observables) is
used to describe particles in cosmic space-time. Cosmic posi-
tion space is described as 83, interpreted as a homogeneous
space of SU(2). An expanding model of the universe is locally
approximated by de Sitter spaces. Irreducible representations
of the de Sitter group are explicitly constructed in ur theory.
From these, Poincaré group representations in Minkowski space
with well-defined rest mass are deduced by a special rule of
contraction.

l. Ur - Theory and Cosmology

We use the terms abstract quantum theory
for the universal laws of quantum theory in Hilbert space, and
concrete quantum theory for the descrip-
tion of objects as they really exist in the world./l/ Abstract
quantum theory includes the universal law of dynamics: the ti-
me dependence of states is described by a one-parameter unita-
ry transformation group in the Hilbert space. Concrete guantum
theory comprises the existence of particles in a 3,l-dimen-
sional space-time with relativistically invariant interaction
laws. We call ur hypothesis the assumption that
all state spaces occuring in concrete quantum theory can be
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spaces which are defined by one unique type of observable,
called Ur - Alternative (e.g. original alternative) in German;
the abstract object cor}esponding to this alternative is

called the vr. We call ur t heory the study of the pre-
misses and consequences of the ur hypothesiss/l/ ch. 9 and 10)

The ur theory will have to test two conjectures:

The suf ficiency conjectu re (SC): The
ur hypothesis is sufficient for deducing the complete concrete
quantum theory from abstract quantum theory.

The triviality conjecture (TC): The ur
hypothesis is trivial in the sense of being a necessary
concequence of those postulates from which abstract quantum
theory itself can be reconstructed.

SC, the sufficiency of the ur hypothesis, may seem to be a
very daring assumption. In order to confirm it we would have
to deduce from the quantum theory of an arbitrary number of
urs

a) the existence of a 3,l-dimensional space-time

b) the existence and properties of all known particles and
fields.

We suppose to have solved problem a) in /l/ chapter 9, as
far as space can be described as flat or constantly curved.
The basic idea is to interpret a symmetry group of the ur,
SU(2), as defining a real 3-space in which it acts as an
S0(3), and which is hypothetically treated in the ur theory as
the position space of physics. The solution of problem b)
cannot be easier than a unified theory of elementary particles
(/1/, chapter 10). The present paper describes a special
model, not contained in /1/, in which we can formulate an
ur-theoretical approach towards problem b).

In any new fundamental theory there occurs a reversal of the
historical order of some arguments. We use two well-known ex-
amples which will turn out to be relevant again for ur theory.

Astronomy, the most ancient exact natural science, was
from antiquity down to Kepler a morphological theory of
planetary orbits, be it around the earth or around the sun,
completed by the morphological cosmology of a finite spherical
universe. General laws prescribed the mathematical form of the
orbits as built from circles or, finally, as ellipses. These
shapes were different from those of terrestrical motions.
Newton’s mechanics was not a “great"”, i. e. additive, but a
*radical®, i. e. reductive unification. In astronomy it

permitted for the first time to ask and answer the gquestion 2
why and to what approximation planets should have mathemati-
cally well-defined orbits at all. Historically the orbits were
the way towards general mechanics; in the new theory mechanics
was the reason why there had to be orbits.

Similarly, the quantum theory of the atom was a radical
unification of mechanics and chemistry. Bohr’s correspondence
principle presupposed the good approximate macroscopic validi-
ty of classical physics and paved the way towards a consistent
guantum theory. Quantum mechanics reversed the argument and
explained classical mechanics as its limiting case.

Ur theory again pressuposes the good approximate validity of
two earlier concepts: of the visible universe
and of particle s . The high degree of homogeneity and
the systematic expansion of the visible universe has permitted
to treat it approximately as one large physical object. Its
history is described in the semi-empirical , semi-speculative
science of cosmology. This science presupposes general relati-
vity which was conceived as a theory of a locally defined
field. On the other hand the concepts of mass-point particles
and/or localisable fields were presupposed by most models of
elementary particle theories; a string in a high-dimensional
space is no more than a generalisation of the particle con-
cept. An additive unification of the concepts of universe and
particle has begun to exist in the description of the earlier
phases of cosmic expansion. Both concepts presuppose the
validity of the concept of space-time.

Since the ur theory claims to derive position space from the
quantum state space of the binary alternative, it is essen-
tially a radical unification of cosmology and particle theory.
A single ur, containing no more than one bit of information,
cannot possibly be localized in the universe. The simplest mo-
del of cosmic space in the ur theory is the largest homoge-
neous space of the group SU(2), that is the group itself, con-
sidered as a topological and metrical space. It is the 83, the
position part of an Einstein cosmos. In this space, one ur can
be described as a spinor wave-function with a wavelength equal
to the diameter of the universe (/1/, chapter 9, section 3b).
If we assume this diameter to be 1027cm, a particle can be lo-
calized down to the Compton wavelength of the electron by
superposing 1037 ur wavefunctions. Thus the ur is essentially
cosmic. The accuracy of the measurement of a small distance is



limited by the available number of urs.

In this theory, space is not an objective ultimate entity
like Newton’s or Einstein’s spaces. Its coordinatisation as 83
is done by the group parameters of SU(2) which are no quantum
observables. As far as its properties can be observed, it is
rather a “surface" of the high-dimensional quantum state space
of a large number of urs. Quantum theory is immensely richer
in information than any classical theory in space-time.

On the other side, the concept of particle equally loses its

37 urs, why

apparent evidence. If a particle "consists" of 10
should these stick together? This problem should not surprise
us. The history of atomism teaches that nearly every particle
which was considered elementary turned out to be composite
sooner or later. Ur theory seems to be the most radical pos-
sible form of atomism; there is no smaller meaningful alterna-
tive than yes - no. Hence we may expect all objécts to be
divisible into urs in princible. This division is no longer
spatial, but informationial. The question then is: what is the
dynamics of the urs; how does it motivate them to keep togeth-
er? This can be subdivided into two succesive questions:

1) How to describe the inertial motion of a free particle?

2) How to describe interaction?

The present paper is confined to question 1). The answer is
given in principle by Wigner’s definition: The state space of
a free pointlike particle is the representation space of an
irreducible representation of the Poincaré group. Thus, if we
can construct such representations by urs, they will permit an
interpretation as particles.

The problem is that ur theory does not yet fully determine
the relevant relativistic group. In order to understand this
problem we turn to TC, the conjecture that ur theory is
trivial (/1/, chapter 9, section 2b). It is indeed trivial as
far as we leave dynamics aside. It is logically trivial that
any n-fold alternative can be represented within the Cartesian

Ka n . It is mathema-

product of k binary alternatives with 2
tically true that an n-dimensional vector space can be repre-
sented within the tensor product of k two-dimensional vector

spaces. If n is countably infinite, so will be k . This decom-~
position is not unique; there are many different possibilities
of defining the ur. The problem is wether the law of dynamics
keeps all these differently defined urs or some of them inva-

riant in time, such that they can be considered as physical

s st

objects (or, rather, "subobjects”). 67;7

Certainly the ur hypothesis is not trivial in full abstract
quantum theory which permits any self-adjoint operator as an
Hamiltonian. In /1/, ch. 9, sec. 2b, we try to narrow down the
basic postulates of quantum theory so as to make TC a neces-
sary concequence. In the present paper we follow a different
path, by way of a cosmological model.

We assume S3, as defined by the symmetry group of the ur, to
be a parametrisation of the cosmic position space. S3 is com-
pact. Hence we seem to have assumed a finite universe. As long
as we may assume that the information content, hence the num-
ber of urs, if‘the universe is finite, a compact position
space is indeed a natural description. (We should never forget
that in ur theory space is not a basic entity, but, only a way
of describing a quantum world, hence perhaps to some extent
conventional.) If, however, we assume an infinite number of
urs, we must represent the quantum state of the universe in an
infinite-dimensional Hilbert space in which noncompact groups
possess unitary representations. Then we can use unbounded
world models.

Yet, in an infinite-dimensional Hilbert space we must
distinguish between actual and virtual urs, i.e. between
alternatives that can be decided, given a real situation, and
alternatives that might only be decided by producing a
different situation. A free particle in flat position space is
an example. A discrete basis of its wave functions is given by
all eigenfunctions of the total angular momentum, j, and of
one of its components, m. The angular momentum is defined with
respect to some position in space; let this be the observer’s
position. Then there will be an uppe} bound jmax for those wave
functions which the observer will be able actually to observe;
for j> jmax
observer will, for him, be practically indistinguishable from

the value of y/ in the volume accessible to the

zero. That means that this observer will only make use of a
finite-dimensional part of the Hilbert space of the particle;
a part which can be decomposed into the state spaces of a fi-
nite number of urs. If he wants to know more about the par-
ticle, he must move to another place, finding an additional
finite number of decisions; and so on. The full representa-
tions of non-compact groups like spatial translations or Lo-
rentz boosts is always done by virtual urs; we cannot actual-
ly walk indefinitely into space or accelerate a particle



indefinitely.

For a cosmological working model/zl we choose a cosmological
(absolute) time coordinate t and a time-dependent total number
Nu(t) of urs in the universe. Nu is supposed to increase
monotonously with t : the number of possible decisions in the
world increases steadily with time. N, will be a measure of
the volume of the cosmic space, as measured by elementary
particles. Thus our assumption describes the expansion of the
universe. The semantic consistency of the model will only
admit a test when we shall have understood how particles can

be described in such a universe.

2. Particles

The concept of a pointlike particle is historicaly an
abstraction from the concept of a body, or of its center of
mass, neglecting the body’s extension or inner dynamics. In
the ur theory, this concept must be derived from more basic
concepts. Wigner derived the free particle from the represen-
tation theory of the Poincaré group. The Wigner particles are
characterised by two numbers: the spin s, and the mass m. In
the ur theory, particles with arbitrary spin can be represen-
ted (/1/, ch. 9, sec. 3e). The determination of m remains an
unresolved problem (/1/, ch. 10, sec, 6d).

In the ur-theoretical context it is plausible that the rest
masses of real particles are cosmologically determined. A
possible consideration might be the following: We measure
cosmic dimensions by ponderable matter (and with the help of
light). The mass of ponderable matter is mainly concentrated
in nucleons. Let A be the Compton wavelength of the nucleon,
R, the radius of the universe. Assume the number Nu of urs in
the universe to be the volume of the universe, measured in
nuclear volumes: 3 3
Nquu/A (1)
In order to localize a nucleon in 3 dimensions we need

1/3

rssa Ru/,\avN (2)

urs. If we assume this to be the number of urs "contained" in

2/3

the nucleon, there would have to be N nucleons in the

world. With Nl/azlo‘w, this gives 1080 nucleons, not too far 69
from the estimated empirical number. The real task of the
theory would be to explain this "condensation" of urs by
statistical considerations.

Our present aim is more limited. We seaich for a precise
mathematical description of particles in our cosmological
model. Wigner’s construction presupposes a Minkowski space. It
would seem natural at any space-time point to choose the
locally tangential Minkowski space. This is what we will
finally do. But we shall insert a locally approximating de
Sitter space between the cosmological model and the Minkowski
space. The reason for this intercalation is that a de Sitter
space combines two properties, none of which ought to be lost.
It contains an S3 as its spatial part; by approximating the
world model this can be identified with the S3 prevailing in
the model at the respective cosmological time t . We need this
compact spatial volume in order to perform the program of
determining the rest mass of the particle. And on the other
hand it possesses a l0-parameter symmetry group which will
permit us to define particles by the Wigner method which then
can be translated into the usual Minkowski descripkion by the
procedure of contraction.

The free particles thus defined will then be the starting
material for a theory of interaction (/1/, ch. 10) including
the transition to the Riemannian space-time of general
relativity (/1/, ch. 10, sec. 7; /2/).'

3. How to build Particles out of Urs

The state space of an ur is Cz. The norm is conserved by
SU(2)x U(l), and by complex conjugation. The latter can,
according to Castell/3/, be linearly represented by
introducing anti-urs, represented together with the urs in a

common C4. The state space for n urs is then the tensor
n n

product C4 = QD C4 . All states of any number of urs are
1 oo n
then contained in the "tensor space" T = c? 4 ct is the

n=0

vacuum. Let r, (i =1...4) be a basis in C4. Then the monomials



n
r. ... r. form a basis in C4 with
i i
1 n
E: see T; | Ty eee Iy D= d . d cun o (3)
+q In kl km nm 1lkl 1nkn
Now we define “pick-" and "stuff-" operators Rr and Sr resp.
(see /1/, ch. 10, sec. 2b) by their action on the basis
monomials:

S rl...rn= rrl...rn+ rlr...rn+ eee *+ Lye.orr

- + TyeeoX T (4)

n n

Rr Tyeeor = LERRRR ...rn+ S IRERR ...rn+ iew F rl...xii...rn(S)

with r; =sr and rk# r for all the other indices; xiimeans omit
K :

this vector from the monomial. With respect to the scalar pro-
duct (3) Rr and sr are adjoint operators: R: = Sr
Further on we define “trucking" - operators trs by

L FjeeeSpecsSyoeer = FleeeTeoaSpeccr +o0t rl...sl...r...rn(6)

for s; =8 and Ty s
The operator Cop only multiplies a monom with the number of
vectors r contained in it.

The following commutation relations hold

g = [Seiy] ~ @ [Fer toe] = * R
[Rr, ss] =t for;\*r [sr, tst] =-sd, (7")
[Rr, sr] = % ¥ in+ I}

fi denotes the operator multiplying a monom with the number of
its factors. '

Castell has shown how the conformal group SO(4,2) can be
represented in the subspace T of T which consists of the
symmetric tensors only. The operators acting in T which are
used in these representations are

+
a = Sr /Yn+l ; a = Rr /Un (8)

with the canonical commutation relations

[ar, a;] = Jrs : [ar, as;I = I:a;, a;_-l = 0 (9)

They correspond to Bose statistics for the urs. In these
representations, s = (nl +n, - ny - n, )/2
with n, designing the number of urs in state r, is the Casimir
operator of S0(4,2) which describes the helicity of the res-
pective particle; the whole space T contains just one repre-
sentation for each value of s, describing a massless particle.
If we want to describe many-particle systems and particles
with non-zero rest mass we must make use of nonsymmetric

tensors. This raises the question wether urs are individually ;77
distinguishable. In principle one would prefer to assume them
to be indistinguishable, since their distinction would be an
additional alternative, not in accord with SC. If TC were
correct, the version of the ur hypothesis turning out to be
trivial would decide the question. We have so far considered
two alternative answers,

The most general statistics for indistinguishable urs is
parastatistics, especially para-Bose statistics (/1/, ch. 10,
sec. 2d). It acts on a larger subspace T of T which contains
in every C4n one representative of every irreducible
representation of the permutation group Sn, i.e, for every
Young standard scheme. It permits representations of SO(4,2)
and its subgroups with finite rest mass.

The present paper presents an other possibility. It works, in
principle, in the full tensor space T. Rr and Sr are defined
everywhere in T. If, following a proposal by Driihl, we define

Rp ==ty # Sp= bt ¢ (ntl) =-t L 103

then the relations (7') can be summarized into
[trs' ttu] = tr d;t " tes Fu 2
Commutation relations for arbitrary powers of these operators

are given in the appendix.
As a "ground state" we define a normed vector QN in T with

Rr QN =0 ; trs QN =0 for r s H -too QN = (N+1) QN (11)

QD is the regular vacuum, a general ground state is given by

T T
w2 Y 'L Ay
< (-1) Pl(rlr2r3r4)...( 1) Pn(r1r2r3r4) (12)
i

Pk denotes a permutation of the quadruple of basis vectors and
Tk counts the transpositions in it. The sum goes over all
possible permutations in all the quadruples.

Over a ground state the stuff-operators generate a linear

Q4= (41)

subspace. Its orthonormal basis vectors are given by

i e 1. 1 1
1 3 14
S)7 8 837 5, a4y t13)

2

(N + n)! s

I
(N+n+L)!ll!l

12125131, = T 71,7

2 4°
with N = 4n, L 11+12+13+14

on '11121314>N |L>N the pick- and stuff-operators act like
Ry |1i'1j'1k'11>n =V1j' VN+n+L' |li'1j'1'1x'11>u
Sy | 1501500y,1y 3y ="’lj+l""N+n+L+l' 11301540, 0,00) 3 (14)

3



tjilli,lj,lk,11>h ='Vlj+1'1fli' |11'1'lj+1'1k'11>h

t54 I = (n+lj) 1>y “too | L2y = (N+L+1) | Ly

4, De Sitter representation for a given ground state

Given a ground state QN’ then, by modified pick- and stuff-
operators, an irreducible unitary representation y 2 of the

74/ r,N
can be constructed such that for different

particles the ratio of their numbers of urs in the ground
state corresponds to their mass ratio. If the spin r of the
particle is not zero then we have (2r+l) vectors with minimal
ur number which in this case is N + 2r,

Let the indicees a, b be equal to 1 or 2 and ¢, d to 3 or 4.
Now we define the following operators

de Sitter-group

s _ (L/2 + 1 - r)(L/2 + 2 + r) .
s =S r
ac !B = Scallk WI(11+12+1)(11+12+2)(13+14+1)(13+14+2) .
2 ! (15)
(L/2 + 1)(L/2 + 2) + N .
:V(N FTn+L+DN+TNRFL T 2) Sy Sl
R I =R IL> = mdtlZ2 = r)(L/2 + 1 + 1) !
ac Lﬁ ca L& .V(11+12)(11+12+ 1)(13+14)(13+14+ 1) B

| L/2 (L/2 + 1) + N° 6)

(1
*Y(N+ n+L)(N+n+L+ 1) 'Ra'Rclhk

- = - - 1
v ig, - ’((13+14 1)-1,)/2 +1) ((1)41,-1,-1,)/2 +1+x) _—
ac (13+14)(13+14+1)(ll+12+1)(11+12+2) *
% -1. - -1 - 2!
" 1/2'V(13+14 11-1,) (241 341,21 -1,) + 4n%' e f1y
. lﬁh ) ’((11*12'13'14)/2 +r) ((15+1,-1,-1,)/2 +1l+r)’ -
ca (T 71,0 (1,71 7 ) (1 +1+ 1) (15#1,%2) . (18)

- - - - - 2'
. 172 1hll+12 1371,) (241 41=14-1,) + 4N° &I}

The generators of the wanted unitary irreducible representa-
tion of the S0(4,1) are (19)

My = (g% Eg)% tag% £43)/2 Py o= (o o= tg,m t45)/2

My = -iltyy= to)¥ t34m t43)/2 Py = =i(t)o- ty)= by t,4)/2

My = (£ €% tyam £4)/2  Bym (tp) ty,m byt 072 73
These six operators form the SO(4) - subgroup
and preserve the number of urs and of antiurs.

Py = (S)47 S3,% Ryg= Ryt Tyy+ Ty Typt Ty4)/2 (20)
Ny = =i(S)3= Syu% Ryu= Rygt Tap= Toat Tyy= Tyy)/2
Ny = = (Syg+ Syu+ Rygt Ryg+ Taob Tyy= Tyy= Tyy)/2

Ny = 1(S)4* Sy3= Ryg= Rygt Ty3= Typ= Tput Typ)/2
The Casimir-operators for this representation are

2 2 2 2 2 2 2 2 2 2
0o " Pl - P2 _ P3 + Nl + N2 + N3 - Ml - M2 - M3
2

H-Bxm?

C,= P (21)

2

c,= (H-B)% - (p - (MF) (22)

4 0
with the eigenvalue equations

Cp 1 13015023, Dy

2
(N = r (r+1) + 2) | 11,12,13,14 >N (23)

2

Cp 1100050 15,0, >0 = - N & (r+D) | 1,15,15,1, Dy (24)
written in the pick- and stuff-operators C, has the form

- . - 2, (25)
2Cy = S)4Ryg + Sy3R 3+ SRy ¥ SyaRp3 = (Bg)7 )

2
* RygSyq * R3Sy + RyySpy + RygSpg = (B337 Eyy)#

+ T)gTyy * TyTyy * ToaTan + ToTya = 2(8380% £21%1))
* Ty Tyg ¥ TyyTyg * T3pTog + TyoTag = 2(t3ata3t 43%34)

We define (for i, k, 1, m mutually different)
(tii + t = tll - tmm)Tig + Ztille + 2t

Kk mk im

A A (26)
+ l3 + 14 + 2)Tik

Then C4 can be written gs
8C, = -(tyjttyottygttyy) ({513' Rygb+{S14/Rya}+ {523 Ros} * {5240 R24})
N Pl
_(il+12+?3+14+2)2({Tla,T31}+{Tl4,T4l}+{T23,T32}+{T24,T42})

2 2
+afeyitg} - 4 eyt v 20y £y - 20y £y
g (27)
In the spin-zero-case there is r = 0 and 11+ l2 = 13+ 14 v

so all Tac and Tea vanish., For half-integer spin the represen-

tations are unitary only for N2;;1/4 . Representations with

integer spin are unitary also for N2 = 0 , but then they de-

compose into a direct sum of tree irreducible representations
+

of the so-called discrete series ﬂ; g
’

. _ + -
2lim 4 2 ° ™ * Mot e

N°=—» 0 r,N o1 (28)



/3/

; + = S
tions ﬂf,r and “},r . In the limit (28) only the photon

representations are of this type.

Castell’s massless particles all belong to the representa-

5. Transition to the Poincaré Group

We have introduced de Sitter space as an approximation to
the cosmological model in order to interpret states from the
tensor space of urs as states of a particle in de Sitter
space. The particle was defined by its minimal ur number N, It
turned out that our operators R and S defined irreducible
representations of the de Sitter group characterized by the
number Nz. These representations are localisable on the 83 as
considered as the position space in the de Sitter world/s/. To
the degree to which we can neglegt the curvature of this 53,
hence approximate it by a flat space, or the de Sitter world
by a Minkowski world, such a state can be considered as a
localized state in a representation of the Poncaré group P .
We shall consider the resulting Poincaré representation as the
Wigner description of a free particle.

The transition from the de Sitter representation to the
Poincaré representation is achived by a group contraction. It
is well known that this contraction can be done in different
ways, sO as to give the Poincaré particle any value m of its
rest mass. We consider N as the quantity in T which
corresponds to the rest mass. Hence we shall carry out a con-
traction such that the ratio N’/N’’ of two different particles
is transformed into the ratio m’/m’’ of their masses.

In the process of contraction a parameter A which
corresponds to the curvature scalar of the de Sitter space
goes towards zero. Simultaneously the parameter N2 which
characterises the representation moves towards infinity. The
rest mass m in the resulting Poincaré representation is given
by
m? = 1im(a%n? (29)

Az—b 0 ; Nz—bao
We need a relation between A and N in order to fix m. It is
sufficient to postulate that this relation should be such that

for two different particles the ratio N’/ N’’ is kept ;Y;
constant throughout the process of going to the limit; then we
will achieve

m’ /m'! =N /N’ (30)

We can e.g. abitrarily choose that the Planck-Wheeler mass
should be m, = 1 for all time. The number of urs in the
Planck-Wheeler particle is Ni/z

assunes, Nu depends on the cosmological time t , the number N of

. If, as our cosmological model

urs in the ground state of a particle whose mass is assumed to
have at a given time a fixed value in units of the Planck mass
will depend on cosmological time:

172

N/ Nu

= f(t) (31)

It will, however, depend on the intended theory of rest masses
in which way this condition will be specified.

Bohm and Moylan/G/ have shown that the representation space
of an irreducible representation of S0(4,1) is the direct sum
of the representation spaces of two irreducible representa-
tions of the Poincaré group, both with positive energy and
equal mass m, but different by a charge-like quantum number.
So, coming from the de Sitter group, the particle - antipar-
ticle dualism is very natural. In their theory m is not fixed,
this is done by our presciption.

We recapitulate our answer to the question l., how to
describe the inertial motion. Locally we have justified the
Wigner description in Minkowski space; its empirical success
justifies our calling the Minkowski coordinate X, the time.
Through the local de Sitter space this identification leads
back to the local time in the cosmological model. However,
with increasing cosmological time t the local Minkowski space
is replaced by another one; it is to be assumed that N and m
will thus depend on t . This dependence will be determined by
the assumed dependence of Nu on t in the cosmological model.
since the actual measurement of time will depend on the
functions N(t) and m(t) , t being the assumed cosmological
time, it seems possible that the model contains no arbitrary
function Nu(tm) ., if t , means the time as locally measured.
But this question is further to be studied.
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Appendix

Some commutation relations for powers of pick- and stuff-
operators
let be r # s

min(n, k) . . .
k .n _ i‘ n! k! n-j .5 .k=j
R trs =30t 3¢ (k=307 trs” Rs B¢ (Al)

j=o
b 5 = E;Tn:_:o}:)(n-j?i S st s P o
RE Sg = ?égif;?)(n—j?i eI et Re 0 (AY)
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