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THE ROLE OF PARABOSE-STATISTICS IN MAKING

ABSTRACT QUANTUM THEORY CONCRETE

Thomas GOrnitz
Maximilianstr. 15

D-8130 Starnberg, Germany

Quantum theory is the most fruitful part of physics, no convincing
experiment contradicting it has ever been found. The great success of this
theory provokes the question:

Can we understand why it is so successful.

The overwhelming success of this theory in experience cannot be de-
duced from experience. This is so for quantum theory like any other uni-
versal law and is known in philosophy already for a long time. Perhaps
gsome people hoped to deduce a theory from sure a priori assumptions. Then
such a theory would be unfailing. But - to my knowledge - all those at-
tempts in the past have failed.

Should this indicate not even to ask the question above? I think not.
To my knowledge the only convincing attempt for a solution of this problem
was made by Kant. This philosopher has clarified that all such general
laws must be necessarily valid in experience which follow from the precon-
ditions of experience alone.

Of course, it is not sure that we are able at all to formulate a
priori the preconditions of experience. Then an absolute certaincy for our
theories can not be concluded. But it seems to me a useful attempt to look
how far it is possible to recognize such preconditions. Then it is a good
working hypothesis to use them and to see which other postulates we need
to deduce quantum theory from all of them together.

One attempt in this direction of understanding quantum theory and its
fundamental role is made by v. Weizsicker and his co-workers (for an over-
view see =2 ) with the concept of "abstract" quantum theory. By abstract
quantum theory is designated the general frame of quantum theory, without
reference to a three-dimensional position space, to concepts like particle
or field, or to special laws of dynamics. Even less it presupposes any
set of laws of "classical" physics which would then have to be
*quantized".

To understand abstract quantum theory the attempt is made to recon-
struct” it. Reconstruction does not mean a mathematically intended axioma-
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tics but it is the attempt to understand as far as possible the conceptual
necessities for quantum theory.

Oof course, possesing the frame of abstract quantum theory does not
mean that the problems of physics have been solved. The hope of our
concept is that beside the principles of abstract quantum theory only one
further concept is necessary. This is the idea of introducing the concept
of the "ur", the quantized binary alternative.

Then we have to go the long and hard way to understand concrete quantum
theory. This means to derive the properties of space-time and of the ele-
mentary particles and also of the fundamental forces between them. This is
connected with some mathematical problems and also with great conceptual
ones. E.g. to derive the properties of space-time from abstract quantum
theory means to derive a cosmological model prior to a theory of gravita-
tion. This is done elsewhere (™, 7, ) and will not be referred in this
paper. In the present paper a path will be outlined from the abstract con-
cepts of ur theory to the construction of states for real particles.

The reconstruction of abstract quantum theory will be outlined brief-
ly in chapter 1. In chapter 2 we explain the concept of the "ur" and its
"second quantization", i.e. the theory of many urs. In the third chapter
arguments are given for the use of parabose statistics for urs. The alge-
bra of parabose operators enables us to construct massless and massive
particles by the urs. This will be demonstrated on concrete examples in
chapter 4.

1. RECONSTRUCTION OF "ABSTRACT QUANTUM THEORY"

"Reconstruction” means the attempt to formulate simple and plausible
postulates on prediction and to derive the basic concepts of abstract
quantum theory from them. The following procedure is mainly based on the
paper "Reconstruction of abstract quantum theory" by Drieschner, v. Weiz-
sdcker and myself (1987), in which the assertions are arranged in four
groups: Heuristic principles, verbal definitions, basic postulates, conse-
quences. For the sake of completeness I will give the main points in a
short review:

1.1. Heuristic principles

Al. Preconditions of experience: As far as possible our postulates ought
to express conditions without which we cannot expect experience to
be possible at all.

A2. Simplicity: Without precisely defining simplicity, we wish for simple.
postulates rather than complicated ones.

A3. Innocuous generality: General rules are usually simpler than speciali-
zed ones. We shall confine ourselves to general rules as far as they
give the hope of being "innocuous"; e.g. claiming the general exist-
ence of a set of states while under special conditions (like a dyna-
mics implying a super-selection-rule) some of those might not actu-
ally come into being.

1.2.Definitions

Bl. Experience: Experience means to learn from the past for the future.

B2. Facticity of the past: We speak of past events as of objective facts,
independently of our actually knowing them.

B3. Possibility of the future: We are aware of future events only as pos-
sibilities.
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B4. Probability: Probability is a quantification of possibility. We define
it as the prediction (mathematically: the expectation value) of a
relative frequency.

B5. Temporal statements: A temporal statement (briefly "statement") is a
verbal proposition (or a mathematical proposition with a physical
meaning) referring to a moment in time.

B6. States: States are recognizable events. A state is what is the case
when some temporal statement is true. States at different times can
be identical: it is meaningful to ask whether we observe now the
same states at a certain time before.

B7. Conditional probability: Let x and y to be two states. Then p(x,y) is
the probability that, if x is a present state, y will be found as
the state if searched for.

B7. Alternatives: An n-fold alternative is a set of n mutually exclusive
states, exactly one of which will turn out to be present if and when
an empirical test of this alternative is made.

B8. Connection: Two states x and y are called connected if there is a law
of nature determining their conditional probabilities p(x,y) and
p(y:x%). If the connection is transitive, i.e. if the existence (by
law of nature) of probabilities p(x,y) and p(y,z) implies the exist-
ence of a p(x,z), then connection is an equivalence relation, defi-
ning a partition of the class of all states into subclasses of mutu-
ally connected states.

B9. Separability: Two states are called separable if they are not connec-—
ted.

1.3. Postulates

Cl. Separable alternatives:

There are alternatives whose states are separable from nearly all
other states. "Nearly" will be defined as meaning all states not
connected with the states of the alternative by postulate 2.
C2. Indeterminism:
Let x and y be two connected, mutually exclusive states {p(x,y) =
p(y.x) = 0}, then there are states z, different from x and y, which
are not constructed from x and y by mere logical operations and
which cannot distinguished by their transformation properties from
the former ones but which possess conditional probabilities p(z,x)
and p(z,y) none of which is equal to zero or to one. Between every
two of the states z there are conditional probabilities p(z,z').
C3. Kinematics:
The conditional probabilities between connected states are not al-
tered when the states change in time:

pl{x,t),(z,t)] = p[(%,0),(z,0)].

l.4. Consequences

Dl. State space: We call the set of states connected with a separable al-
ternative its state space. With innocuous generality we assume the
state spaces of all separable n-fold alternatives A, to be isomor-
phic: S(n).

A state zeS(n) defines n conditional probabilities p(z,x;) where x5
(i = 1...n) are the states defining the n-fold alternative;

n
Z p(z,%;) = 1
i=1
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D2. Completeness: For any mathematically possible set of values p(z,x,)
there is a state z in S(n). We assume this to be an example of inno-
cuous generality.

D3. Equivalence of states: All states in S(n) are equivalent. Else their
distinction would be an additional alternative connected with A . A,
would hence not have been separable. (This "separability" should not
be confused with the mathematical concept of separability of a Hil-
bert space)

D4. Symmetry group: The equivalence of the elements of S(n) is expressed
by a symmetry group G(n) which preserves the conditional probabili-
ties between them. Due to D3, G(n) must be a continuous group.

D5. Alternatives in S(n): Due to D3 there exists a p(x,y) between any two
states x and y of S(n). The equivalence of all states in S(n) fur-
ther implies that any z eS(n) is a member of a precisely n-fold al-
ternative of mutually exclusive states of S(n).

D6. Metric in S(n): As an "assumption of simplicity" we suppose G(n) to be
a simple Lie group. There are two simple Lie groups preserving a re-
lation of mutual exclusion between precisely n normalized vectors by
preserving a metric: O(n) and U(n). Thus we assume S(n) to permit a
faithful irreducible representation in an n-dimensional vector space
V(n), G(n) being either orthogonal or unitary. The states of S(n)
will then correspond to normalized vectors in V(n), i.e. to one-di-
mensional subspaces.

D7. Dynamicg: According to C3, the change of state in time must be a one-
parameter subgroup D(t) of G(n). We call the special choice of such
a subgroup the choice of a law of dynamics.

D8. Preservation of state: If a state is to be recognizable in time, there
must exist a possible law of dynamics which keeps this state con-
stant.

D9. Complexity: The generator of D(t), as defined in D7, must, according
to D8, permit diagonalization. This is universally possible only if
V is complex, and, due to the metric, a Hilbert space. Hence G(n) =
U(n).

D10. Composition: Two alternatives A, and A
deciding their Cartesian product Ay
direct product Hilbert space V(m.n)

are simultaneously decided by
=RA,xA, . A . defines the

n
N
= V(m)*V(n).

2. THE WAY TO CONCRETE QUANTUM THEORY: THE CONCEPT OF THE "UR"

Traditional quantum theory accepts the concepts of time, space, par-
ticle, field, hence of motion, position, momentum, energy, force from
classical physics. In the reconstruction only time is used from the out-
set, and all concepts of objects are replaced by the logical concept of
"alternative", all concepts of temporal properties of objects by the con-
cept of "state".

Time, however, is described in a more detailed manner than in classi-
cal physics. While it is also measured by a real variable t, explicit use
is made of its "modes": present, past, future, with their qualitative dif-
ferences.

The "abstract™ theory (which was outlined above) is general enough to
gerve as a frame for introducing all the above-mentioned traditional "con-
crete"” terms. All these concepts and the theories referring to them, like
relativity and particle theory, should be developed as a conseguence of
abstract quantum theory and of the addition of one single (and simple)
idea: the reduction of all alternatives to the successive decision of bi-
nary alternatives (yes-no decisions, bits or "urs").
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2.1. The "ur" - the quantized binary alternative

It is a trivial fact that every n-fold alternative can be decomposed
in a product of binary alternatives and that every state space can be un-
derstood as a subspace of a tensor product of two-dimensional spaces.

The central dynamical postulate of the ur hypothesis is:
For any object there is at least one decomposition into
binary subobjects - called urs - such that its dynamics
is invariant under the symmetry group of the urs.

An ur itself is not something like an "ultimate particle" and not
even a "small object". The ur theory is to be understood as a theory of a
logical atomism.

The binary (n=2) alternative defines as its state space the space of
two complex dimensions C“, possessing a SU(2) symmetry. Systems defined by
a Cartesian product of n binary alternatives possegs a state space which
is, or is a subspace of, the tensor product of n C”-spaces:

T, = C2xg2xe v wg2
All objects with such a type of state space will have at least Su(2)
as a symmetry of their dynamics. SU(2) is locally isomorphic to SO(3), and
we start from the working hypothesis that this is the reason for a three-
dimensional real space offering a natural description of all objects in
physics: the "position space". How relativity, and particles as irreduci-
ble representations of a relativistic group, can be derived from this hy-

pothesis will be shown in chapter 4.

If the number of urs is not fixed then they must be described in the
tensor space Tp of urs with index set {1,2} and Botzmann statistics:
[oe]

n:B=c2 + 02402 + c2xc2xc? +...=c? +(c%)*? +(€%)*3 440" 44T, (1)

thereby * is the tensor product, + the direct sum and '.l:n=(c2)*n .

In Ty there is a canonical scalar product induced from C“. All elements
from T, are orthogonal to all of T, for n + m.

We start with the assumption that all the urs are different. For the
alternatives it must make sense to say which one of it was intended. So as
yet no symmetrization is recommended.

If X, and x, constitute a basis in €? then the 2" monoms

X, xj X +oeXy Xm *n [xi, xj, KpreoorXyy Xnr Xp € (xl,xz}]
build up a basis for T .
In Ty it is possible to define mappings between T and T, ., - This can be
done by ogerators for rising or lowering the degree of the tensors. We
define li , the operator of left-multiplication by X; ¢ as

+ +
li x = li xj Ry oe0eX) = xixj Xy seeXqp (2)

li+ is a operator with norm 1 and therefore welldefined on Ty

1Y = 1.7t =1 3
AEFAN 1718 125 x| (3)

There exists an adjoined operator li . It is defined for each y and all

xeTp by the condition: There is a y
*

y = liy such that(y,li+x) = (y*,x) . (4)
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1i removes from x a left hand sided x; or, if there is non, annihilates x.
Therefore it is

;1,7 = id (5)
and
T
1 1i = P, (6)
1,1, =0 for i + k . (7)

P, is a projection operator which annihilates all x without a left hand

sided Xy

So li+ and li are partial isometries. They can be _extended to unitary
transformations by an extension of the Hilbert space ( pp. 436). This
imbedding of Tq into the space T can be seen analogously to the imbedding
of the natural numbers into the positive and negative whole numbers. In a
philosophical sense the whole numbers are to be understood as operations
on the natural numbers (““). In the same sense the vectors of the extended
space T are operations on the tensor space TB'

The extension of the partial isometric operators to unitary operators
is straight forward. Firstly we have to introduce a onedimensional sub-
space Q, the "vacuum", which is defined by

+
# lixi = Q resp. 1i Q = x5 for every i (8)
and further on more vectors

x(_i) = liQ and so on, (9)

which are orthogonal to all of the vectors from Ty -

In the case of the urs we denote x(_l) by X4 and x(_z) by X3,

+
llQ -> 14 Q (10a)
and @

129 -> l3 Q (10b)

A basis for the space of all states in T is given by polynoms in li and
li+' ie{l,2} (Geyer 1973, p. 180), resp. in li+ alone for ie{1,2,3,4}
acting on Q

+ +

+
i 1j 1 @

= Xi Xj -..Xk Xl

+
1 ceely 'l

with i,j,...,k,1 € {1,2,3,4} (11)
For this Boltzmann-"ladder"-operators we have
+ + .

1,71, = 1,1." = id (12a)

i i
and therefore

4
[1; +1;1 =0 (12b)

2.2. The introduction of symmetries between the urs

Normally, in the concept of a "second quantization"” the ladder opera-
tors are used to build up generators for a symmetry group. This group acts
on the objects belonging to this new step of quantization.

To construct generators for a symmetry group it is necessary to have
commutation relations for the ladder operators. The same sample of vectors
constitute different Boltzmann tensors which are differentiated only by
the sequences of the vectors in it. Therefore to get commutation relations
we have to introduce symmetry relations between such tensors. In the ten-
sors (11) the sequence of the operators is ordered by the place of the
operators in the file. To allow symmetry relations between the operators
means to weaken the differences of its places in the line.

All states in T can be expressed by the formula (11). If one wants to
diminish the order of the factors, states with both factors X4 and X, oOr
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both factors Xy and §3 could possibly diiappear. Giving away the
identityof 119 and l4 Q and of 129 and l3 Q, it becomes possible to
preserve the whole manifold of vectors in the extended Boltzmann space as
starting point.

We give a new definition

li Q=0 for every i € {1,2,3,4} (13)
Every x; in a monom (1l1) has a fixed position which is not marked in

a extra way. To "weaken" the order we label the position by an extra upper
index, i.e. we introduce "kinds of urs". Then it becomes possible to give
up the demand that all of them must be different. The difference in place
is moved into the difference of indices. Therefore adding a new ur, it
must be put onto every possible place. The new operators éw?%ch are called
"Stopf- and Rupf- Operatoren", stuff- and pull-operators “’~~) are denoted

by
1.V -> ¢ l, ==>r
i i ¢ i i

An stuff-operator sia generates an new ur of the "type a" in a state i .
It is
b b

Sy Q = Xy (1l4a)

and
a a

£ 2% = 0 (14b)

and for any monom in T (not necessarily only those from tensors generated
by some sia out of Q) it is defined

sia ijxkc...xld = Ns[ xiaijxkc...xld +
+e(a,b)ijxiaxkc...xl +
+e(a,b)e(a,c)xj xkcxia...xl + oo
oW w +e(a,b)s(a,c)...e(a,d)ijxkc...xldxia ]
The normalization factor N, may depend on the degree of the monom. The
gsign factor e€(a,b) will be used to differentiate the upper indices:

e(a,b)=1 for a=b , €(a,b)=-1 for a+b
a

(15)

For the operators r," we get

a b _
r, xj = 6ab5ij Q (14b)

and for any monom in T (not necessarily generated by some sia out of Q)

ria ijxkc...xldxme = N[ 5ab51j<ij>xkc"‘xldxme + (16)
+€(a,b)6acéikij<xkc>...xldxme + ...
...+e(a,b)e(a,c)...e(...)éadéilxj xkc...<x d>xme +
+e(a,b)e(a,c)...e(a,d)éaeéimxj Ky eeeXy <xme> 1

whereby <ij> means the cancellation of term xj in the monom.

We denote as usual

.as.b + s.bs.a = {s.a, s.b}
*a_p Ip_ta ‘a Ip
4 sj = sj ;7 = (s sj ] (17)
For the operators sia and ria we have the following commutation relations:
b b b
{sia, sj } = {sia, rj } = {ria, rj } =0 for a + b (18)
and
a dq o a a, _
[si ' S] ] = [ri 1 rj 1]=20 (19)

2.3. The connection of the ladder operators with the SU(2)-symmetry

A physically meaningful symmetry between the subspaces of T has to be
connected with the symmetry inside the spaces T, carrying a tensor repre-
sentation of SU(2).
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For the generators of SU(2) it is
[Tjn,Tnl] = TinTnl ~ TnlTyn = ile (j,n,1l = cycl. {1,2,3}) (20)
If u. und dk denote in this moment general up- and down- step operators,
then” for a connection to the SU(2) symmetry we need something like
+ A o+
. dkuj t+ujdk =1 ik ajk id + n jijk (21)
with numbers l'jk and n'jk which are to specify.
There are different possibilities for such numbers. E.g. for the

demand
N, =1 and Nr = ]

-]
the operators sia and ria would behave as
a a, _ a : ;
[ri ' sj ] = Tij for i + j .
We denote by nia the number of factors xia in a monom and by
a _ a a a a
n® = n;% + ny," + n3™ + n, (22)
The total number of factors in a monom is
n =g, n®
Then it is
a a. _ a
(r;"y ;7] = n;” +n+ 1

3. PARABOSE-STATISTICS FOR URS

We will denote by p the number of the different types of urs. Till
now all the urs are introduced with a clearly distinguishable type. But if
the urs can belong with equal probability to every possible type we can
get parabose-statistics for the urs. In this case we cannot use any monom
in T, instead we have to restrict the theory to such tensors which are ge-
nerated by the 8; out from Q.

At first we specify the normalization factors N, and N.. The commuta-
tion and anticommutation relations (18) and (19) are indifferent with re-

spect to Ns and Nr and remain valid. But [ria, sia] will be changed.

Now we define operators bka+ and bka by

b, 3% = 5,2 with N, = (n® + 1)71/2 (23)
b,® =zr,® withn, = (n® 71/2 (24)
and get by computation
o 20171 = 5, (5221 =0 (b %1% =0 (25)
and again for b + a
gy %%y < 0 .2 " = 0 by = 0 (26)

Such anticommuting Bose operators are used in Green's decomposition of pa-
rabose operators ak+ and a, (ll p. 427):

at =t + b2+ ...+ b Pt (27)
k kl k2 kp
a, =b" +Db  + ...+ Dby (28)
It is well known that the ak+ and a) fulfil the three-linear commuta-
tion relations + $ + +
[{arlas}lat]=o [{ar Ias }Iat 1=0 [*{arl as }r at]=_55tar (29)

The gquantum theoretical interpretation of our construction is
straight forward. The Green-indizes constitute a hidden classification,
any ur belongs with the same probability to any class. The, strictly
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speaking, required normalization factor l/pl/2 is usually neglected in the
literature to make the commutation relations free of p.

The connection with the SU(2) symmetry within the subspaces Ty is

given by (see formula (20))
_ + +, + v
Ter = (1/2){ag, ag'} [Trgrap 1 = g2y [Trgrag) = ~8ppag  (30)

The combination of two free objects by its tensor product remains
valid also for parabose urs. Because of the partial indistinguishability
of the urs the tensor product of its state spaces must be constructed as a
product of the creation operators over Q and not of single tensors from T
alone.

By the demand that for different objects the Green's indices_should

be disjoint we get a new composition rule ("Heidenreich product” ). This
is different from the tensor product of free objects and should therefore
express interaction between the objects (7, p. 432).

4. PARTICLES WITH PARABOSE-URS

Objects which can move freely in a space-time are normally called
particles. Free motion means motion under a maximal group of transforma-
tions. In a fourdimensional space-time such a group can be at most 10-
dimensional which happens in the case of constant curvature.

By the bilinear combinations of the parabose creation and destruction
operators it is possible to construct the representations of S0(4,2) (in
connection with the urs see 4 & ). So it is possible to construct
all three groups of motions in a fourdimensional space-time of constant
curvature, i.e. 80(4,1), S0(3,2) and the Poincare group. The combination
with the linear operators also allows the representations of supersymme-
tries, connecting Bose- and Fermi- representations.

In ur-theory the cosmological model does not correspond to a space-
time with a constant curvature, therefore there does not exist a ten-para-
meter transformation group. To describe particles we have to go into the
tangential space, i.e. Minkowski space-time. There the irreducible repre-
sentations of the Poincare group give the states of particles.

4.1. The generators of the Poincare group

We use the following abbreviations

_ +
Isr = (1/2){ari ag 1 (31a)
a’gp. = (1/2){a,", ag'} (31b)
ag, = (1/2){a,, ag} (31c)

and define the number operator
A, =T.. -p/2 (314)

For the generators of 0(4,2) (for its Bose form see e.g. 27) we take the
expression given by ( p. 407), where a skew-hermitean form of them is
used. They are

3 - i s - 1 + +
Myp = (1/2)(+6; -fiy +fiz -fiy) Nig = (1/2)(+ayy e 13 T4 ™% 24)
My3 = (1/2) (=715 +Tyy ~T34 *T43) Nyg = (1/2)(-ay3 e 13 %24 Y9 24)
B (L/2)(+115 +T5y +T34 +T43) Ny = (1/2)(-ay, —a' 14 —a33 ~a 53)

23
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e 3 . == = = + = +
Mg = W21+ 405 —Tgy ~Tggl Nyg = (A72](-opy e 13 Y24 % 24)
Mps = (1/2) (#7315 —Tyy =T34 *T43) Npg = (i/2)(-ay, T%.13 %24 '“+24) [52)
Mgg = (Lf21(80g By —fy +5,) Ngg = VLIZ)ltayy ~a gy Yoy =0 g

; - x o + +
Mg = (L/2) (+#0y +0iy +fi3 +0, +2p) Nyg = (1/2)(*ay, —a 4, -ay, +“+23)
s = (1/2)(+ﬁ1 +ﬁ2 ~ﬁ3 -fiy) Ngeo = (i/2)(+a14 ta g, —ay3 A ,3)

For the generators of the Poincare group we use the expressions for
the translations

Py = Mg + N Py = Ngg + My (33a)
and the operators of S0O(3,1) for rotations and Lorentz boosts:

Myge Bygs Bogs Nygr Npygr N3y (5]
Then the momentum operators are given explicitly by

_ " _ _ _ + _ +

2Py = [i(71p +7Tp3 —T34 ~Ty3) —ag3 *ag, +“+13 “+24]
2iPy = [1(715 —Tpy +T43 ~T3q) *tajz *ay, " e " gl (34)
2P3 = [i(ﬁ1 -ﬁ2 —ﬁ3 +ﬁ4) +a14 +a23 —a+14 —a+23]
2Py = [i(hy +hy +fig +0, +2p) +ay, -ayy -a g, talp4]

4.2. Momentum eigenstatesg for particles

In (23’ Sy 25) the representations are given in an abstract way. In
the present paper we are interested in concrete momentum eigenstates for
particles. This are states |¢> which fulfil

(BB (B = [diryy ~ Tau) + apy, + o' o]0 = © (35a)
(P1-iPy) [8> = [i(7yy = T4q) - ay5 -~ a'p,l|e> = O (35b)
(Pg+P3) [#> = [i(A; + A, + p) + a;, - a'1,1]8> = im, |@> (35¢)
(Pg=P3) &> = [i(f, + fig + p) - ayy + a’y3]|e> = im_|e> (354d)

If m, and m_ are both different from zero we have a state of a
massive particle and for m m_=0 a massless one. A state with m ,=m_=0 is a
vacuum state.

+

For a state of a massless and spinless boson we make the ansatz

+B.u—-8 -1 + + B
&> = 3 3, (-1yHTEIHTR By T e (u, B a 4 23 |o> (36)
and get under the condition m++0 for the coefficients c(u,B) the equations
c(u,B)y=c(u) (37a)
and
(utp)e(u+l) —(2u+p-m )c(p) —po(u-1)= 0 (37b)

For p=1 , formula (37b) is the recurrence relation for the Laguerre poly-
nomials.
A state of a massless boson with helicity o is constructed from
s B- -1
[¢> = Z,2 1 Hgiu)

For the condition m++0 the coefficients c(u,o0) must fulfil the equations

+ + + B
c(u,0) a 11°a l4ya 23 |Q> (38)

(Htpt20)c(u+l,0) - (2u+p+20-m )c(u,0) + pc(u-1,0) = 0 (39)

A state of a massless fermion with helicity 1/2 is realized by

1 + 4+

; B— - 4
[r> = Z2 4 Hgiuty te(u) a 19 14" 233 [e> (40)

with m++0 and

+(ptptl)c(u+l) —(2u+ptl-m )c(u) +pc(u-1) =0 (41)
It is obvious that for such massless particles these states are nearly of
the same form.
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Now we have to look for massive particles.

Massive particles cannot made from power series in a 16 and « 23B alone,

there must be extra factors of the type a+13 and af 24 *
For a massive spinless particle we made the the ansatz

. B- -1 + + + + B
0> = zozyzﬁl #(y!B!o!o!) g(u,B,0)a 130a 24oa 14#a 23 Q>

and get from (35a-d) the conditions

(o+l)g(u,B,0) +(otl)g(u+l,B+1,0) ~(o+1)g(u,B+1,0) —(o+l)g(u+l,B,0)

-ug(u-1,B,0+1) -Bg(u,B-1,0tl) +(u+B+pto)g(u,B,otl)= 0

-[2u+20+p-m, ]g(y,B,0) +(20+p+p)g(u+l,B,0) +ug(u-1,8,0)
= -Bg(u,B-1,0+1)

-[2B+20+p-m_lg(u,B,0) +(20tp+B)g(u,B+1,0) +Bg(u,B-1,0)
= -ug(u=-1,B8,0+1)
from this equations it follows
-(2u+20+p-m_1g(u,B+1,0) +(20+u+p)g(p+l,B+1,0) +ug(p-1,8+1,0)
= - (B+1)g(u,B,0+l)
-[2B+20+p-m_]g(u+l,B,0) +(20+p+B)g(u+l,B+1,0) +Bg(ut+l,B-1,0)
= —(p+l)g(u,B,0tl)

and we can get an equation with fixed o:

(u+1) {-[2p+20+p-m ]G (K, B+1,0)+(20+p+p)g(p+l,B+1l,0)+ug(u-1,8+1,0)}
= (B+1){-[2B+20+p-m_]g(u+l,B,0)+(20+B+p)g(u+1,B+1,0)+Bg(u+l,B-1,0)}

(42)

(43)

(44)

(45)

(46)

(47)

(48)

If we want to solve it by separation of variables we get in any case mass
zero equations. It seems only possible to solve it step by step. In this

case we get with the ansatz
g(0,0,0) =1

the following values for the coefficients g(u,B,0)

g(1,0,0) = (p-m.)/p
g(0,1,0) = (p-m_)/p
g(0,0,1) = mm /p(p+1>(p 1)
g(2,0,0) = [(p-2m+)/p +m, 2/p(p+1))
g(1,1,0) = [(p-m,-m_)/p +m.m_/(p+l)(p-1)]
9(0,2,0) = [(p-2m_)/p +m_%/p(p+1)]
g(0,1,1) = mm_(2+p-m )/p(p+l)(2+p)(p 1)
= m,m_/p(p+l) (p~1) -m.m_ 2 /p(p+1) (2+p) (p-1)
g(1,0,1) = mm_(2+p-m, )/p(p+1)(2+p)(p-1)
= m,m /p(p+1)(p—1) -m_m,%/p(p+1) (2+p) (P-1)
g(0,0,2) = /P(P ~-1)
g(l,1,1) = [(3+p—m -m_)p +(2 2m, -2m_+m_m )m, m ]/p(2+p)2(p2—1)
g9(2,1,0) = [(p~ 2m+)/p +m, 2/p(1+p) —m_ (p+l-m+)/p(l+p)
m (2+p—m+)(p +2p— 1)/p(1+p)(2+p>(p -1)]
g(1,2,0) = [(p-2m_ )/p +m_2/p(1+p) -m, (p+1 m_)/p(1+p)
JO_(2+p-m_) (p 24+2p- 1)/p(1+p)(2+p)(p -1)]
g(0,2,1) = (6+5p—6m_+p —2pm_+m_m_)m+ _/p(2+p)(3+p)(p -1)

and so on.
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4.3. The introduction of the Lorentz vacuum

The last formulas became very difficult, no closed solution seems to
be possible. Therefore it is reasonable to look for a simplification. This
can be got by introducing the Lorentz vacuum Q>

The states given above are constructed over the ur-vacuum. For this
there is no ur being present, i. e. it posses not any bit of information.
The meaning of the Lorentz vacuum is that there is not any real particle.
The knowledge "there is no particle" is of much greater amount of informa-
tion than the knowledge "there is no ur". Therefore it seems plausible and
also eagier if we construct the particle states over the Lorentz vacuum
instead the ur vacuum.

We define the Lorentz vacuum by the equations

(Py+iPy) [0r> = [i(Tyy = Tg4) + ap, + aty51]0p> 0 (49a)
(Py=iPy) 81> = [i(7yy = T43) - ay3 - a+24]]QL> = 0 (49b)
(P4+P3)|QL> = [i(f) + fiy + p) + aj, = a+14]]QL> = 0 (49¢)
(Pg=Py) |@p> = [i(f, + fig + p) - a,; + a+23]|QL> = 0 (494)

which have the solution
lo, > = 2,55 (-1)“*‘31“"3(“131)'1a+14“a+23B o> (50)

L+ +
exp i(a 23 — @ 14)|n>
Now we are able to create particles out from the Lorentz vacuum instead
out from the ur vacuum. The formulas for the particle states became much
simpler.

4.4. Massless particles from the Lorentz vacuum

We start with a particle of mass zero and spin o. Its state

+
®(m,,0)" |0 >

is defined by the conditions

(Py+iPy)@(m,,0)* |0, > = 0 (51a)
(Py-iPy)®(m,,0) " |2, > = 0 (51b)
(Pg=P3) @(m,,0)%|a,> = 0 (51c)
(Pg+P3)®(m,,0) |2 > = im & (m,, )" > (51d)
My, ®(m,,0) %[ > = iog(m,,0)% |0 > (51e) .

The ansatz
e(m,,0)"|a, > = a*ll°”goc(y,oya+l4#|nL> (52)

results in

" _ ) i (p+20—l{i__ -

H,0)= ¢(0,0)(im )F ——— (for u=0,1,2,...) (53)

pl(p+20-1+u)!

For spin-1/2-particles we have to replace a+11° by a+1a+11U in for-
mula (52) and in (53) o by (o+1/2).

With the formulas (52) and (53) we have given the momentum eigen-
states for massless Bosons and Fermions as expansion series in the para-
bose operators.

4.5. Massive spinless particles from the Lorentz vacuum

Massive Bosons without spin must fulfil the conditions

290



(P +iPy)@(m)t [ > = 0 (54a)
(Pl—iPz)Q(mi+|QL> =0 . (54b)
(P,+P5) @ (m) |nL> = im ®(m) |nL> (54c)
(Pg-Ppe(m* o> = im_o(m)*|ay> (54d)

with m_m+%0. They can be constructed from the ansatz
+ + o+ o+ + B
o(m)" o> = 2 Z, Zp h(uB,0)a" 3%, % 14“a 23 | > (55)
for which (54) give the conditions
=(u+1) (B+1)h(u+1,B+1,0) —(o+l) (p+o+2)h(u,B,0+1)=0
=-im h(y,B,0) +(o+1)2h(y,B—1,o+1) +(u+l) (ptut+20)h(u+l,B,0)=0
-im_h(u,B,0) —-(o+1)2h(u-1,8,0+1) -(B+1)(p+B+20)h(u,B+1,0)=0

The coefficients of the solution have the following recurrent relations

im (pto+2)

h(u+l,B,0)= h(p,B,0)—— * (5>0) (56)
(u+l) [ (p+ut20) (p+o+2)-B(o+l)]
—im_ (pto+2)
h(u,B+1,0)= h(u,B,0) * (u>0) (57)
(B+1) [ (p+B+20) (pto+2)—pu(o+l)]
h(u,B,0+1)= {for u>0, B>0, utB}
h(u,B,0) (-mym_) (p+o+2) (p+B+u+20) (58)

(o+1) [(p+o+2) (p+B+20) ~p(0+1) ] [ (p+o+2) (p+u+20)-B(o+l) ] (p+u+tB+20+1)

and {for u>0, B>0, u=R}
h(u,u,0) (-mm_) (p+o+2)
h(p,p,0+l)= (59)
(o+1) [ (p*+u+20) (pto+2) ~p(o+1) ] [ (p+u+20) (pro+2) - (p+1) (0+1)]

Massive particles with spin are to describe by more complicated
formulas. But in principle they are not different from the former ones.
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