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We discuss the close connection between a quantum theory of binary 
alternatives and the local Lorentzian structure of space-time and outline v. 
Weizsäcker’s concept of the “ur"- the quantized binary alternative. Then 
space-time is introduced mathematically as a symmetric space of the invariance 
group of the ur. It is physically interpreted as “the” cosmological space–time, 
the universe. In our model spacelike structures rest on the concept of 
“hypermembranes” – dynamical manifolds of codimension 1 in space-time. 
For a given number of urs a smallest length is introduced in this cosmic model 
by group theoretic arguments.  
Already before introducing a dynamics the concept of isolated non composite 
objects can be given. They can be understood as simple models either for 
elementary particles or for black holes. Identifying the maximal localized states 
of many urs with a localized state of a particle, we get a good description of the 
large cosmological numbers and also a lower bound for a neutrino mass. A 
simple counting of the particle states given from the ur-theoretic ansatz allows 
an easy explanation of the Bekenstein-Hawking entropy. 

 
 

One can give good reasons why reality cannot at all be represented by 
a continuous held. From the quantum phenomena it appears to follow 
with certainty that a finite system of finite energy can be completely 
described by a finite set of numbers (quantum numbers). This does 
not seen to be in accordance with a continuum theory and must lead to 
an attempt to find a purely algebraic theory for the description of 
reality. But nobody knows how to obtain the basis of such a theory. 

–Albert Einstein, The Meaning of Relativity, 6th ed., Appendix IID. 
 
 
 
 
1. INTRODUCTION 
 
 Quantum physics is extremely successful in its description of 
experience. This is a factum which has to be explained. 
 In his book, Aufbau der Physik, v. Weizsäcker (1985a) gives a 
survey of the foundations of physics and presents the idea that quantum 
theory should be taken as the basic theory for the whole physics. 

                                                 
1 Arbeitsgruppe Afheldt an der Max-Planck-Gesellschaft, D-8130 Starnberg, 
Germany 
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In a recent paper, Drieschner et. al (l987) give a detailed description of 
the reconstruction of abstract quantum theory. Only a very short and 
rough overview will be given here. “Abstract" quantum theory means 
quantum theory in Hilbert space without any reference to position space 
or to actually existing particles. 
 The starting point is to explain as far as possible quantum physics as a 
consequence of the preconditions of experience. In the context here, 
experience means learning from the past to predict future events. 
Therefore an elementary understanding of past and future is a 
precondition for every empirical science. 
 v. Weizsäcker's consideration of semantically consistency is in some 
sense an antiaxiomatic principle: We have to start with an elementary 
and imprecise understanding of conceptions which cannot be given in 
an axiomatic way. After we have developed the theory, we must take a 
new look at our starting concepts either to improve or to change them 
or to understand them in a better way. 
 Science examines decidable alternatives: Any object is defined by 
the alternatives that are decidable with respect to its states or properties. 
In any decision we want to get at least probabilities for the outcomes of 
the measurements. This implies a preunderstanding of probability and 
measuring. Drieschner defines probability as the prediction of an 
expectation value for a relative  frequency. Such regressive definitions 
are also characteristic for quantum theory, e.g., multiple quantization 
can be understood as the application of the quantization procedure 
again to a quantum theory. This will be explained in a forthcoming 
paper. 
 
2. RECONSTRUCTION 0F ABSTRACT QUANTUM THEORY 
 
2.1. The impossibility of a Consistent Classical Theory 
 
 All stable basic objects in a classical theory, such as stable atoms in 
statistical thermodynamics or the stable rigid bodies in mechanics, 
cannot be explained without using quantum theory. As Planck already 
saw, it is a fact that a classical continuum cannot be thermodynamically 
stable without a (possibly hidden) quantum hypothesis. Therefore, we 
make the hypothesis: 
 Only quantum theory can be the basis for the whole of physics. 
 
2.2. Reconstruction of Abstract Quantum Theory 
 
 To reconstruct quantum theory, v. Weizsäcker introduces three 
postulates:  
 (A) Separable alternatives. There exist separable, finite, empirically 
decidable alternatives. 
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 (B) Indeterminism. With any pair of mutually exclusive states x, y in 
an alternative there exist states z with conditional symmetric 
probabilities different from 0 or 1 to find z for giver x or y: 
 
  p(x, z) ≠ (0 or 1), p(y,z) ≠ (0 or 1) 
 
 C) Kinematics. States of a given alternative develop in time in such a 
way that their relative probabilities remain unchanged. 
 
From these postulates some consequences result: 
 
 (i) State space. The set of states for every n-fold alternative 
constitutes an n-dimensional vector space. 
 (ii) Symmetry. No state of an alternative is distinguished. There 
exists a probability preserving symmetry group. The probabilities bring 
in the continuum, so the symmetry group will be a Lie group. 
 (iii) Dynamics. The states develop under the action of an one-
dimensional subgroup of the symmetry group with time as its 
parameter. 
 (iv) Preservation of states. If a state is to be recognisable, there must 
exist a dynamics that keeps this state constant. 
 If a dynamics is to be observable, first it has to hold the alternative 
separated. Second, if it has no eigenstates, no state could be observed. 
So by this “Darwinistic" argument from the dynamics it follows: 
 (v) Vector space. The state space has to be a vector space over the 
complex numbers, moreover an n-dimensional Hilbert space. 
 Only the complex numbers are algebraically closed, so in this case 
we can always have diagonalizable self-adjoint generators for the 
possible dynamics. 
 (vi) Composition. Two alternatives are decided by deciding their 
Cartesian product. The state space of the product alternative is the 
tensor product of the state spaces of the two sub alternatives. 
 
 The concept of “abstract" quantum theory can easily be recognised. 
No reference to a classical theory or to position space has been made. 
 
3. THE DEFINITION OF THE Ur 
 
 It is the hope that by this theoretical concept (v. Weizsäcker 1955, 
1971, 1985a, b; Scheibe et al, 1958; Castell 1975) that the whole 
concrete quantum theory and with it the basic laws of physics can be 
derived by means of the additional postulate of urs: 
 

(a)  Every n-fold alternative can be decomposed into a product of 
binary alternatives. 
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(b) Every state space can be understood as a subspace of a tensor 
product of two-dimensional spaces. 

 
After these two trivial-seeming statements we set up the central 
dynamical postulate: 
 

(c) For any object there is at least one decomposition into binary 
(sub)objects – called urs – such that its dynamics is invariant 
under the symmetry group of the urs. 

 
 This postulate – all objects “arise from” or “consist of" urs-constitutes 
a radical abstract atomise. It is impossible to reduce science to 
something simpler than a set of binary alternatives. But we note 
explicitly that this conception has nothing to do with a set up of matter 
by spatially smallest objects. 
 So the ur is introduced as a (sub)object, quantum-theoretically 
described in a two-dimensional complex Hilbert space. The probability 
preserving symmetry group for its states is built up from the U(1) as the 
dynamical subgroup, from SU(2) and the complex conjugation. This 
group was called the co-unitary group by Finkelstein et al. (1959). 
 
 
4. THE INTRODUCTION OF POSITION SPACE 
 
 The close connection between a quantum theory of binary 
alternatives and the local Lorentzian structure of space-time has been 
known for a long time from the work of v. Weizsäcker (1955, 1958, 
1971; Scheibe et al., 1958) and, independently, of Finkelstein (1969). 
Whereas v. Weizsäcker looked for, so to speak, “energy-momentum 
alternatives," Finkelstein has done this for “space-time alternatives." So 
in some sense his view is conjugate to ours. 
 These old relations were rediscovered from another point of view by 
Noyes et al. (1987), who came from string theory. In this connection 
also the work of Chew and Step (1986) should be mentioned, who start 
from an electrodynamically oriented model. 
 In the present paper we will investigate first the global structure of 
space and second physical restrictions for the measurability of a 
smallest length. 
 In physics, position space is distinguished by several attributes: 
Every interaction between different objects depends on their relative 
position (in some cases also on the time derivatives of the position). 
Every observation happens by interaction; therefore, every 
measurement is first a measuring of position. 
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 We call position space the space of minimal dimension in which the 
description of interacting objects is possible in general. This space is con-
structed by projecting all the individual configuration spaces of all objects 
into a single one of the same dimension. After this projection, all the 
positions of the different objects are in one and the same space. Therefore 
it becomes possible to speak of their spatial distances. 
 In a sample of interacting objects the strength of the interaction 
between them is not changed if the state of each one is transformed with 
the same group element from the group of motions in position space. On 
the other hand, if different objects are transformed by different group 
elements, then the strength of their interaction will be changed. This 
group-theoretic aspect shows that position space should be understood as a 
symmetry space of its group of motions. 
 For quantum physics the concept of position space is not a natural one. 
First, the localisation of a single quantum object is a nontrivial problem. 
Second, two interacting objects can always be described as one object 
possessing internal degrees of freedom and, a fortiori, in almost all cases it 
is impossible to describe the whole object as a composite one, because the 
states in which the object is formed of its “parts" constitute only a set of 
measure zero in the whole state space. So one could formulate that the 
introduction of position space introduces the classical limit of separated 
objects and is in some sense in contradiction to quantum physics. An 
attempt to correct this drawback can be made by introducing interaction. 
 To introduce the concept of position space into the ur theory we use its 
group-theoretic aspect and the projection process described above. Such a 
projection process has be expressed more verbally as “space-time 
describes only a surface of reality" (v. Weizsäcker, 1985b). 
 If we project all the state spaces of the urs onto a single one, we can 
examine probability relations between states of different urs. 
 Since we propose all objects as constituting of urs, it is obvious that the 
probability relations between the objects should remain unchanged if we 
transform all the urs by the same element from its symmetry group. But 
the probability relations will be changed if the urs constituting different 
objects are transformed by different group elements. We will interpret this 
phenomenon as a changing strength of interaction between those objects 
and we make the following hypotheses (v. Weizsäcker 1955, 1971): 
 

(i) The parameter space for the strength of interaction is a 
symmetric space of the symmetry group of the ur. 

(ii) The physical position space can be identified with this space. 
If we make the idealisation of the free ur, then its invariance group is 
essentially U(2). The time development might be described by the 
subgroup 
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U(1). So as symmetric space of the invariance group representing 
position space we have to choose 
 

U(2)/U(1) = SU(2) = S3 
 
 In ur theory it is supposed that this is the reason for the three -
dimensionality of Position space. 
 
 
5. COSMOGRAPHY 
 
 A typical structural element in the Ur-theoretic way of thought is the 
reversal of the usual order of the arguments. So we have to consider the 
spacelike structure of the cosmos prior to a description of gravitation 
and particles. 
 The states of an ur constitute an abstract C2. It is a representation 
space of a representation 2D1/2 of SU(2), which can be considered as a 
subrepresentation of the regular representation of this group in the 
Hilbert space 
 
  L2(SU(2)) = L2(S3) 
 
 The elements of L2(S3) can be approximated by functions with 
smooth graphs of codimension 1 in a four-dimensional space-time. In 
analogy to hyperplanes (which are flat submanifolds of codimension 1), 
we will call them hypermembranes. Thus, we can represent the states of 
an ur by hypermembranes in the position space S3 possessing only one 
node plane. Hence an ur is an object extended over the whole cosmic 
space. 
 If there are more urs in this cosmos, they constitute higher 
dimensional representations of the symmetry group SU(2). Each 
irreducible component again can be represented by sets of 
hypermembranes over S3 possessing different frequencies. In general 
there are multiplicities larger than one for these irreducible components. 
The muitiplicities express the probabilities for the occurrence of the 
different irreducible representations. Consequently, if we have more 
urs, then it is possible to get a higher spatial resolution, because in 
higher dimensional representations sharper wave packets can be 
formed.2 
                                                 
2 Before we investigate the spatial structure in this model we point out hat no 
dynamics has been defined. That means that there is no assumption on the time 
development for the number of urs in this cosmic model and from the ur-theoretic 
concepts only the two  trivial" postulates arc used. If we speak in the following about 
the number of urs, we mean the expectation value of this expression, because at a 
fixed time the existence of a sharp number of uts cannot be supposed. Also, at this 
stage. the distinction mass and energy is not possib!e. since here is no description of 
motion. 
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 Let R denote the radius of curvature of this cosmic space and let N 
be the number of urs in this cosmos at a given time. Then they 
constitute a representation (2D1/2)⊗N of SU(2). Its decomposition into 
irreducible components is given by (we define |N/2|=k for N=2k or 
N=2k+1) 
  
  |N/2| N! (N+1 -2j) 
 (2D1/2)⊗N   = ⊕  ––––––––––––– 2|N/2| -2j +1D|N/2| -j   (1) 
  j=0 (N+1 -j)! j! 
 
The wave functions of an irreducible representation nD have a 
wavelength of the order R/n (sec, c. g., Vilenkin, 1968).3  
 To estimate the distribution of the wavelengths of the 
hypermembranes that can be found in a cosmos containing N urs, we 
have to investigate the factor of multiplicity  
   N! (N+1 -2j) 
  f(j) = –––––––––––––   (2) 
    (N+1 -j)! j!  
The maximum for f(j) is at4  jmax = (1/2)[N - √(N+2)]  , so  
   jmax ≈ (1/2) [N - √N]  for N » 1 (3)  
For f(j) we get, with 
 
   ln(n!) ≈ (n+(1/2))ln n  – n + (1/2) ln (2π) 
 
the result  
      f(N/2) = O(2N/2 N-3/2 )  
 
   f[(1/2)(N - √N)] = O(2N/2 N-l )  
After the maximum, we have between j =(1/2)(N - √N) and j = 0 an 
exponential decrease of f(j) from the order of  2N to 1. It can be 
approximated by  
  f(jmax - (1/2)a) =  2N exp[-(1+a/√N)2]  (4)  
 We see from this estimation that the multiplicities are large for rep-
resentations kD with 0 ≤ k ≤ 2√N. Above this point there is an 
exponential decrease for the multiplicities. Therefore the corresponding 
representations could be neglected. 
 The N urs constitute a highly decomposable representation of SU(2) 
which mirrors the spatial structure in this cosmos. Without further 
assumptions we can say that representations with localisations sharper 
than R/2√N 

                                                 
3 A basis in its representation space is given by the projections on the unit ball S3 in 
the space C2 of the homogeneous polynomials of degree 2n in two complex variables. 
4 It can be found by the ansatz f(jmax) = f(jmax +1)  
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almost never occur. So for a cosmos containing N urs we define a value of 
order R/√N = λ0 as the shortest possible physically realisable length, 
which later will be identified with the Planck length. 
 
 6. COSMOLOGICAL ESTIMATES FOR PARTICLES
 

Now we have to look for states of urs constituting an isolated 
noncomposite object. We will start with the concept of a fixed time, so 
only the nondynamical aspects of the objects can be investigated. 

In physics we know two types of “noncomposite" objects: some kinds 
of elementary particles and black holes. An elementary particle can be 
localised in space down to its Compton wavelength without disturbing its 
identity. A black hole is localised inside its Schwarzschild radius. Both of 
these conditions can be modelled in the ur concept. 

Let n urs constitute a single object. Then the most localised state that 
possibly can be constructed from these urs has an extension of the order 
R/n. We suppose that such a state can be identified with a localised state of 
a particle and denote a volume of diameter R/n as an ,,elementary volume" 
for this kind of particle (localizing with respect to the three dimensions in 
space requires at most 3np urs and not np

3) 
By our condition of a minimal length in the cosmic space this can be 

done only down to λ0. This will create an upper bound for the number of 
urs constituting an elementary particle. To localise up to R/N1/2=λ0 we 
need N1/2 urs for such a hypothetical object. 

v. Weizsäcker first investigated the number of urs in our universe. He 
referred to the fact that ponderable matter is built up in its essence by 
nucleons and that observations give a radius of 1040λproton for the meta-
galaxies. He claimed that the number of urs should be equal to the number 
of elementary proton volumes λproton

3 in the metagalaxies. This means that 
the number of decidable questions can be expressed by the number of bits 
deciding for each such volume to be either empty of filled up. 

In a fundamental theory this is a natural condition for a first guess. 
Because there is no more fundamental proposition, we can check our ideas 
only by consistency considerations. Conceptual thinking cannot represent 
the wholeness of reality, so any physical theory has a limited force of 
explanation (Drieschner et al., 1987; Görnitz and v. Weizsäcker, 1987). 
We want to define separate alternatives. In a first step it seems meaningful 
to identify the statements about separate alternatives with the statements 
about the possibilities for the distribution of the fundamental parts of 
matter in space, i.e., we use these as a representation for the set of 
meaningful decidable questions. All measuring devices, all clocks and 
rods, are made from ponderable matter. Since space is essentially void, the 
approximation of separate 
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alternatives is in this case an adequate one. The postulate was 
 
   N = R3/λproton

3 (5a) 
With 
  λproton = 10-40 R (5b) 
we get 
 
 N = R3 /(l0-40R)3 or N = 10120 (5c) 
 
So he got for the number of urs the value N = 10120 and then he had to 
conclude that about 1080 nucleons should exist in the universe if all the 
urs formed nucleons. The resulting density for matter of 10-1 proton/cm3 

is of the order of the observed value. 
There also can be a lower bound of the ur number for a separated 
elementary particle. It will be reached when the whole cosmic space is 
filled up with occupied elementary volumes of those objects. Let nn urs 
constitute such a ,,neutrino”; then their maximal number in the universe 
is N/nn.. The diameter of the elementary volume is  λn = R/nn. . From 
 
 R3  = (N / nn) λn

3  (6a) 
 
we get 
 
 R3  = (N/nn) (R3 / nn

3)  or nn = N1/4 (6b) 
 
such that, if all the urs formed neutrinos, there would be almost N3/4 of 
these particles. 

Taking for the number of urs N=10120, we get for the minimal 
length the value λ0= R/1060. If we compare this with the length λproton, 
we see that λ0 is of the order of the Planck length. 

The condition that each particle possesses its own elementary 
volume can be seen in analogy to the features of fermions.5 

Our estimates remain valid also if the urs are roughly equally 
distributed over a few kinds of particles (see also Session 7). If this 
special idea can be further confirmed, it would result in a rest mass for 
neutrinos of an order smaller than 10-10mproton. Neutrinos with a 
substantially smaller rest mass, if there are any, can then be formed 
only from a negligible part of all the urs in the universe and are unable 
to contribute to its total mass in a substantial way. 

For particles of the bosonic type the idea of their “own" elementary 
volume is very dubious. The wavelength for these particles can be as 
large as the radius of the universe (but in such a case it seems hard to 
speak 

                                                 
5 Hence we have called them “neutrinos” and “protons”; at this stage a distinction 
between electrons and protons is not yet possible.  
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about particles ). So we request that in the average the urs be in states with 
such a wavelength that the volume of the cosmic space is equal to the cube 
of this wavelength times the number of all these extended objects. Then in 
the average every such small volume is occupied by only one such 
,,boson” Since in this situation there is nothing to decide, it looks like a 
thermal equilibrium and we will call these objects ,,photons.” Due to our 
conditions we get 
 
 R3= Nλph

3 (7a) 
 
and it follows that 
 
 R3 = (N/nph)(R3/ nph

3) or nph = N1/4 (7b) 
 
such that N3/4= 1090 of these ,,photons" could exist. The relation between 
the maximal numbers of photons and of nucleons (which also remains 
valid if instead of N urs only parts between 10-0N and 10-2N are forming 
these particles) is 
 zphoton / znucleon = 1010 (8) 
 
which is of the order of the empirical value. 
 If we identify the energy of a particle with an extension of the order of 
the Planck length with the Planck energy of 1019GeV, then our model 
“nucleon” has a mass of order 0.1GeV and the temperature of the 
“photons” is of the order 102K. A single ur corresponds then to an energy 
quantum of 10-32eV. 
 So the ur theory can offer a natural was to explain the so-called large 
cosmological numbers. 
 
7. Ur-THEORY AND THE BEKENSTEIN-HAWKING ENTROPY 
 
 Entropy means missing information – an ur represents a bit of 
information – so there has to be a dose relation between these two 
conceptions. As v. Weizsäcker (1971, Chapter III5) has mentioned, 
information is related to a concept, a basic idea. In physics normally 
entropy is related to the particle concept (respectively, to a quantum field) 
and not to the ur concept. If we want to do the same here, we have to look 
for possible (virtual) particle states inside the objects under consideration. 
If we take as microstates in the sense of Boltzmann the distribution of 
particles in space, i.e., the occupation number of elementary volumes by 
particles, we can estimate a particle-related entropy. 
 By an informatively closed or irreducible volume we understand a 
finite volume V ≈ R3 on which no information about its internal states can 
be obtained from “outside.” This can happen because the volume is itself a 
closed space or by a horizon. 
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 We will start with a closed cosmic space with a curvature radius R and 
use Planck-Wheeler units. The basic objects - the urs - are represented by 
the hypermembranes of wavelength R and energy 1/R. Let N be the total 
number of urs; then N = R2. The total number of mutually orthogonal 
states of all urs is 2N, so the entropy with respect to the urs is of order N. 
The energy of one ur is 1/R, so for N urs it is R and we get 
 
 entropy ≈ (energy)2 (9) 
 
 Now we compute an entropy related to localised particles. Let ni urs 
with ni = √N form a particle of mass-energy mi=ni/R and elementary 
volume vi = λi

3 = (R/ni)3. Then the number zi of the i particles can be as 
large as zi=N/ni , and the number of places Pi is equal to 
 

Pi= V/vi = R3/ (R/ni)3 = ni
3 

 
 The thermodynamic probability of putting zi particles of a bosonic 
type on Pi places is 
 

  WBi =(Pi+zi)!/(Pi!zi!) (10) 
 
For a general ni we get 
 
  SBi = ln WBi  
  =(ni

3+N/ni) ln(ni
3+N/ni) - ni

3 ln ni
3 - N/ni ln(N/ni)  

 = ni
3[ln(1+N/ni

4) - N/ni
4 ln(1+ni

4/N)] (11a) 
 
With αi = ni

4/N,    N-1= αi = N, we get 
 
 SBi = N3/4 αi

3/4[ln(1+αi
-1) - αi

-1ln(1+αi)] = N3/4 fB (αi)  (11b) 
 
The entropy SBi has its maximal value at αi = 17.5 or  ni ≈ 2N-1/4. With 
fB(17.5)=1.902 we get 
 
 SBmax ≈ 2 N3/4  (11c) 
 
 If at most one particle can be at a place, then we will denote these 
objects as fermionic particles. The thermodynamic probability to put zi 
fermionic particles on Pi places is 
 
   WFi =(Pi)!/{(Pi-zi)! (zi)!}  (12) 
 
For ni = N1/4 it is WFi = 1, 6  and for ni=N1/2 we have 
 
 ln WFi = N3/2ln(N3/2) - (N3/2 - N1/2)ln(N3/2 - N1/2) - N1/2ln(N1/2) 
 ≈ N1/2 (1 + lnN)   (13) 

                                                 
6 This was the reason for the or lower bound for the fermion rest mass. 



538  Ur Theory and Bekenstein-Hawking Entropy 

For a general ni we get  
  SFi = ln WFi  
  = ni

3 ln ni
3 - (ni

3-N/ni) ln(ni
3-N/ni) - N/ni ln(N/ni)  (14)  

With ni
4 = αi N,  1≤ αi ≤ N, one has  

 SFi = N3/4 αi
3/4[-ln(1 - αi

-1) + αi
-1ln(αi - 1)] = N3/4 fF(αi)  (15a)  

The entropy SFi has its maximal value at αi = 22.5 or  ni ≈ 2N-1/4; with 
fF(22.5)=1.8782 we get  
 SmaxFi ≈ 2 N3/4  (15b)  
 The maximal entropy Smax in the Bose as well in the Fermi case is 
equal to the value given by the simple calculations in Section 6. 
 The calculations above are made under the extreme condition that 
all urs form only a single kind of particle. The other extreme is the 
assumption that all possible particles of all possible numbers of urs in it 
will be present. In this case the total entropy Si for localised particles 
can be computed by means of the partial thermodynamic probabilities 
for ni from 1 to N1/2.  
Let zBi, and zFi be the number of particles (bosons or fermions) made 
from ni urs. Then  
    N1/2    N1/2 (Pi+zBi)! (Pi)! 
 Si = ln  Σ  Π  Wi

 ?= ln Σ  Π  –––––––––––––––––––– (16a) 
  zi  1     zi   1 (Pi! zBi!) {(Pi-zFi)! (zFi)!} 
 

   N1/2 (ni
3 + zBi)!  

 Si = ln  Σ  Π    ––––––––––––––– (16b) 
  zi   1 zBi! (ni

3 - zFi)! (zFi)!  
Thereby the sum over zi must be taken over all combinations for all zBi 
and  zFi with 0 ≤ zBi + zFi ≤ N/ni under the secondary condition  
  Σ ni (zBi + zFi) = N (17) 
 
As usual in thermodynamics, Si can be approximated by the logarithm 
of the largest term of the sum (16), which is given if the zBi and the zFi 
have the values  
 zBi0  = ni

3 /[exp(µni) - 1] (18a)  
   zFi0  = ni

3 /[exp(µni) + 1] (18b)  
µ is a Lagrange parameter, which can be computed from 
 
  N1/2  
 N = Σ   ni

 (zFi0
 + zBi0)     

  ni = 1  
 
  N1/2  
   = Σ   ni

4 {[exp(µni) -1]-1 + [exp(µni) +1] -1   (19) 
  ni = 1  
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An approximation to equation (19) can be found by 
 
  ni=N1/2 ni

4 ni
4 

 N  = Σ   –––––––––  +  –––––––––    
  ni=1  exp(µni) -1  exp(µni) +1 
 
  x=N1/2 x4 x4 
 N ≈ ∫   (––––––––  +  ––––––– ) dx   
  x=1 exp(µx) -1  exp(µx) +1 
 
  y=µN1/2 y4 y4 
 N ≈  µ-5   ∫ ( ––––––  +  ––––––– ) dy   
  y=µ exp(y) -1  exp(y) +1 
 
  x=∞ x4 x4 
 N ≈  µ-5   ∫  ( ––––––  +  ––––––– ) dx  (20) 
  x=0 exp(x) -1  exp(x) +1  
which gives (see Gradstein and Ryshik (1963, 3.411.1 and 3)  
 N ≈ 2µ-5 Γ(5) ζ(5) ≈ 240 * 1.04µ-5 (21) 
 or 
 µ  ≈ 3.0 N-1/5  ≈  N-1/5   (21’)  
For the total entropy St we get   
 N1/2 [n3 + n3/(eµn - 1)]!  
 St =  Σ   ln –––––––––––––––––––––––––––––– (22a) 
   n=1  [n3/(eµn-1)]![n3-n3/(eµn+1)]![n3/(eµn+1)]! 
 
 N1/2   µn    µn      eµn + 1  
 St =  Σ    n3 ( –––––  +  –––––  +  ln –––––– ) (22b) 
   n=1   eµn-1    eµn+1      eµn -1   
which by (19) is equal to 
 
    eµn + 1  
 St =   µN  +  Σ  ( n3 ln  ––––––  )  (22c) 
       eµn  - 1  
 

This can be approximated by 
 

 x=N1/2    eµx+ 1  x=∞    eµx+ 1   
St ≈ µN + ∫  x3 ln –––––  dx ≈ µN + µ-4    ∫  x3 ln ––––– dx (23) 
 x=1 eµx - 1   x=0    eµx - 1  
 

For the integral we get by numerical integration a value of order 12.05, 
so  
  St  ≈ µN + 12 µ-4  ≈ 3N4/5 + 12 (3N-1/5)-4 ≈ N4/5  (24)  
 This value for St gives an upper limit for the entropy of localised 
particles. In reality we have only few kinds of particles, therefore the 
estimates (11c) and (15b) give a better approach to the empirical value, 
which is of order 1090. For the value N = 10120 this corresponds to N3/4. 
 The picture of a localized particle used above already has many 
classical aspects. It is not so bad for thermal photons with their limited 
coherence length, but in general a quantum particle has many 
nonlocalized states. 
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 If a particle is built up from ni urs, then it should have about 
exp(niln2) - Pi non localised quantum states and the thermodynamic 
probability (16a) should get an additional factor:  
 Wi(nonlocal)= [exp(n ln2) - Pi] Wi   (16a')  
and the total „nonlocal" entropy Stnl gets an additional term: 
 Stnl  ≈  St + Σ (n ln2 – 3 ln n)      
 Stnl  ≈  N4/5 + [N1/2(N1/2 + 1) /2]ln2      (24') 
 
so that 
 Stnl  ≈  (1/2)N ln2 ≈  N (25) 
 
This is indeed of order of the total number of urs. In the sense of 
semantically consistence this result can be interpreted that the urs give 
the information of all possible quantum states for the particles. 
 After these considerations, for a cosmic space we will look at 
irreducible volumes inside a cosmos. Let nbh urs with nbh > √N form a 
single object. Then zbh = N/nbh of them could exist at most. We will call 
them irreducible if their maximal extension λbh is equal to R/zbh: 
 
   λbh = R/zbh   (26) 
 
This simple condition mimics much of the properties of a 
Schwarzschild horizon. We get 
 λbh = R/zbh = R(nbh/N) = nbh/R (27) 
 
 The mass-energy of an ur is 1/R, so the mass of an object of nbh 
urs will be 
 mbh = nbh(l/R) = nbh/R (28) 
 
For these irreducible objects mass-energy and linear extension are of 
the same order. 
 The fundamental hypermembranes for an irreducible object with 
spatial extension λbh have an extension of order λbh and are formed by 
σbh urs with 
 
 λbh = R/σbh (29) 
 
Therefore 
 
 σbh = R2/nbh (30) 
 
The number of these hypermembranes Nbh is 
 
  Nbh = nbh/σbh = nbh

2/R2 = mbh
2  (31) 
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 Now it is possible to make the computations with these 
hypermembranes in the case of an irreducible object in the same 
manner as with the urs in the case of a cosmos. Therefore we get for the 
entropy of the internal states of such an irreducible object the value 
 
 Sbh ≈ mbh

2 (32) 
 
 This is, up to a constant factor of order one, the Bekenstein-
Hawking entropy for a Schwarzschild black hole. If it is permitted to 
identify the irreducible objects with Schwarzschild black holes, then the 
ur-theoretic model gives a very simple explanation for its entropy. This 
entropy is then to be interpreted as an expression for the missing 
knowledge about its internal degrees of freedom. These degrees of 
freedom are described by the relation between the “constituting urs” of 
the object and the information about its spatial extension inside a 
spatially closed cosmic space. 
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