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Abstract

It is very useful to distinguish between four type$ interactions in nature: gravitation, and then
electromagnetism, weak interaction and strong &utigsn. The mathematical structure of electromagmebut
also of weak and strong interaction could be undetsas induced by a local gauge group. The adsdcia
groups are the unitary group in one dimension - U(for electromagnetism, the special unitary groupnvo
dimensions — SU(2) — for the weak interaction, Hrespecial unitary group in three dimensions —33U(for
the strong interaction. The essence of this artch® give a “first-principles” explanation fordfthree gauge
groups.

1 Introduction

Countless experiments have shown that it is vepfuldo distinguish between four types of interaet in
nature.

The oldest one treated in physicgiavitation Since Newton’s days, it is clear that this forcanages the
interactions between all astrophysical objectsrdtgye is infinite. Later on, the theory was pé#stieeplaced by
Einstein’s theory ofieneral relativity

By the end of the 8century, the physicists had learned more and mbeait electricity. At the beginning
of the 19" century, it was evident that electricity and maigme are connected. In the middle of thd' t@ntury,
Maxwell then clarified the mathematical structufelectromagnetism
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In the middle of the 20 century, it became clear that it is possible tootepose the atomic nuclei into
protons and neutrons. Therefore a force has td wkigkh is much stronger than the electromagnetice and
which is able to hold all the protons inside thelaus — which repel one another by their electnarge.

On the other hand, the decay of the neutron anecaly the discovery of the neutrino have givee Hint
for another interaction, thgeak interaction

Experimental results, at first from interactionsedéctrons with protons, showed that there arecttras
inside the proton. Today these structures are namatks and gluons and are often described as¢gast The
theory ofstrong interactionexplicates now the behavior of quarks and gluarsthe resulting forces between
protons and neutrons.

Towards the end of the POcentury, it became clear that not only the mathiala structure of
electromagnetism but also of weak and strong intEna could be understood as induced by a locabgau
group. This means that the interaction shows sym@setwhich are allowed to be differently orientatl
different points in space.

The associated groups are the unitary group indimension — U(1) — for electromagnetism, the specia
unitary group in two dimensions — SU(2) — for theak interaction, and the special unitary grouphreé
dimensions — SU(3) — for the strong interaction.

With these three compact groups, the relevanttsires that rule the related interactions can berdes.

There are also efforts to apply the conception gaage group to gravitation. Various groups havenbe
proposed which should solve the problem for thevitaional interaction. As a further complicatidhe use of
non-compact groups is inevitable here. So far nointéhe envisaged Lie groups have afforded a sufidess
solution, and the issue of the quantum theoretestription of gravitation is still seen as opere Wave given
arguments elsewhere, why in the end such atterripptsowbe successfuf.

Experimental evidence shows that the respectivgegmoups are well chosen, but there is still #sednfor a
deeper foundation of their mathematical structufesthe best of our knowledge, a “first-principlestplanation
for the three gauge groups could not be furnisleefdus For instance, H. Lyre stafes

»~Am Horizont sowohl der physikalischen als auch pleitosophischen Untersuchungen tber Eichtheoréened sich
die noch vollig ungekléarte Frage nach einer noelfeten Bedeutung der Konzeption der EichtheorienDsmn
wenngleich das Eichprinzip — wie gezeigt — nichtrmyend auf nichtflache Konnektionen fuhrt, so &tpch die in
der kovarianten Ableitung vorgegebene Struktur echselwirkungsterms auch fir den empirisch bedewts
Fall nicht-verschwindender Feldstarken korrekt heisben. Diese Wechselwirkungsstruktur ist alse&ettlich aus
der lokalen Eichsymmetrie-Forderung hergeleitetsVeler ist der tiefere Grund fir diese, zunéchist flrmale
Mdglichkeit? Scheinbar handelt es sich um einefliggeenden und konzeptionell noch véllig unverstameh
Zusammenhang zwischen Raum und Wechselwirkung*

(At the horizon of both the physical as well aslgdophical studies on gauge theories the still detafy open
question emerges of the deeper meaning of the ptioneof gauge theories. While the gauge principkes shown —
does not necessarily lead to non-flat connectitiresstructure of the interaction term, as deterthimg the covariant
derivation, is correctly described even in the efoglly significant case of non-vanishing field estgth. This
structure of the interaction is, in fact, derivedni the requirement of local gauge symmetry. Buttvikéhe deeper
reason for this, so far only formal, possibility@egingly, there is a deeply rooted and conceptuadinpletely
unexplained relationship between space and interagt

Even years later the situation appeared not todre satisfactory. Norbert Straumann stated

.Das Standardmodell hat aber noch andere unbefeedie Ziige. Das beginnt schon damit, dass wir miistehen,
weshalb gerade seine und nicht andere Eichsymme##isiert sind.”

(The standard model has even other unsatisfacBpgcss. This starts with the fact that we do natenstand why
exactly its and no other gauge symmetries arezeshli

The purpose of present article is to give a “fipaticiples” explanation for the three gauge groups.

The first-principles explanation will be based e tsimplest structure that is imaginable in quantbeory.
Such structures are absolutely defined abstraattgoainformation (AQI) bits, which already for mathatical
reasons are the simplest conceivable structures.AIdl bits are cosmological founded. This is thasgn for
their absolute character. They must be imaginettess of any special or definite meaning. Quantuts bs
forms of information are normally seen as carryimganing or connotations. To avoid such obvious
misinterpretations, for the general discussion timdion “protyposis” (Greek: “pre-formation”) has dre
introduced. The protyposis is an expression foroanwlogically founded absolute and abstract quantum
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information, being free of meaning. The AQI bitstbé protyposis are the most abstract structureseieable.
Sufficiently many of them may congregate to formtenial or energy quantum particles and ultimatdgoa
acquire meaning.

In a previous articfean explanation was given based on the protypasisept for the two groups U(1) and
SU(2) as the gauge groups of electromagnetic amadk weeraction.

The different descriptions of interactions almolstays use the term “particles”. Even in cases wléedds”
are addressed, the explanation is based on ttghinsi theoretical physics since Einstein’s introiiton of light
guanta that the force fields can be understoodrastsres of quantum particles.

» “Particles” thus prove to be the fundamental stireet when it comes to the discussion of interastion

To the present day, the conceptions of particle® lieen dominating the thinking about the basiecstres of
reality. For example, the official website of CERMtes:

The model describes how everything that they olesémvthe universe is made from a few basic blockited
fundamental particles, governed by four forZes.

The theories and discoveries of thousands of pisysisince the 1930s have resulted in a remarkasbight into the
fundamental structure of matter: everything in timiverse is found to be made from a few basic Ingldlocks
called fundamental particles, governed by four amdntal forces. ...

All matter around us is made of elementary pasiclee building blocks of matter. These particlesun in two basic
types called quarks and leptons. Each group censistix particles, which are related in pairsiganerations”. The
lightest and most stable particles make up thé deseration, whereas the heavier and less stablielps belong to
the second and third generations. ...

The quantum theory used to describe the micro warld the general theory of relativity used to dbscthe macro
world, are difficult to fit into a single framewark

A possible decay of the “basic blocks” does notsé®damage their alleged fundamentality. The taat
thinking is similar elsewhere, is demonstrated BSY, Deutsche&lektronenSynchrotron — the German
electron synchrotron) in Hamburg on their relatezbsite:

What does the world consist of at the smallestif®eVghat are the most fundamental particles of nfatiatural
scientists have been looking into these basic guestsince antiquity. In the course of their seartiey have
encountered ever smaller building blocks — firstna, then atomic nuclei consisting of protons aaedtrons, and
finally tiny particles called quarks. Today, paeighysicists are investigating the fundamental tenyss of the
universe: what holds the cosmos together, and twpadticles acquire their mass in the first pldce?

Taking the conceptions seriously, then somethingdmental’ should not have any internal structume
should it possibly be able to decay.

All this shows how vaguely the term “particle” coronty is defined.

2 The conceptions of a “particle” and a “quantum object”
For a particle there is a clear mathematical difimiby Eugene Wigner:

» A particle is defined by the fact that its statparsan irreducible representation of the Poincesém

From this mathematical structure it follows thaparticle is distinguished by its mass — with valuasging
between zero and infinite — and by a spin, whicly mave the values 0, %2, 1, 3/2, 2, ... etc.

However, beyond mathematical physics, this definittan hardly be utilized. What does it mean inccete
terms?

The Poincaré group is the group of movements irhkowski space, which is the space in which thecsal
theory of relativity operates. This means that tisieomprised to form a unity with length, widthdahneight so
that the mutual change of these variables becoi#gevin case of movements.

Furthermore, the mathematical conception of a g@artmplies that no internal structure can be oleseri.e.,

the object can be treated as a “point particle”h&s been demonstrated previodstile mathematical structure
of the state space of such a particle, being asdugible representation oft the Poincaré group, lcan
constructed from the AQI bits of the protyposis.céuing to this construction, particles in thedtsense are
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defined as structureless objects that can movhanvacuum of the Minkowski space. If a quantum ctbgan
undergo decay, a possibly alleged “structureless’ngould be questionable.

Taking all this into account, the light quanta, fifeotons, can be defined as massless particlegribzsiand
electrons are generally understood as point pastidince no internal structure can experimentalyerified.
Electrons are stable, and neutrinos do not deaayever, their three types can transform themsealweseach
other.

Although protons are stable, an internal struchae been known for a long time. Accordingly, thars were
introduced to express this structure. It has todied that, on the one hand, the proton is no puarticle, and,
on the other hand, quarks cannot move in the vacuum

Given this situation, a further clarification oftlerms used here is indicated, to which the faligvdistinction
of quantum structures may contribute:

Quanta without rest masdways move in vacuum at the speed of light. Tienta known so far are the photons.
If there are gravitons as quanta of gravitatiopyttill also be massless. This is backed by thetfet, in 2016,
gravitation waves have been observed for the tiimst by a device on earth. Of course, linearizegraximate
solutions of Einstein’s equations can be quantaealogously to the case of electrodynamics. Howeserfar
all attempts to quantize the complete general thebrelativity have not shown any tangible succastially,
and this speaks against the existence of gravitons.

Quanta with rest massre able to stay in vacuum within a small spatiab. Their mass is recognizable by their
inertia, i.e., by the effort needed to change thespective state.

Structure quantaepresent a particularly interesting consequerioguantum theory. This family includes the
phonons, the quanta of sound vibrations in sofidayell as the quarks already mentioned.

The phonon-electron interaction is one of the kisments in the ubiquitous modern electronics based
semiconductor physics. Sound in solids can be wews positive atomic nuclei swaying around their
equilibrium positions, which influences the moveinefithe negatively charged electrons. Here, thenphs are
the correct quantum-theoretical description of ¢hescillations; of course, they cannot appear guuen outside
the solids.

In the scattering of electrons off protons, quaaks like point particles existing inside the pratofirying to
isolate a quark is similarly unsuccessful as trytimgsolate a magnetic pole by breaking a magmnetake of the
magnet, a north pole and a south pole result abribekpoint and thus two smaller magnets, but namésolated
pole. Similarly, the isolation of a quark can benpared to the task to cut the end piece of anielasap in
such a way that only the end piece is obtainedowit a minimal piece of the strap.

Obviously, structure quanta cannot appear as abje¢he vacuum, and they should not be presesadeh. In
that sense, they are not particles. Nonetheleghjnatheir respective context, they can act likal ngarticles.
Possible designations, other than “structure quaata “virtual particles” or “quasiparticles”.

3 The types of interactions

Gravitationacts on everything that exists in the cosmos. Withe general theory of relativity, it is describas
local change of the space-time with a local vasiatf the density.

The most important interaction for all chemical apidlogical processes is theectromagnetic interactign
which is produced by electric charge. It can becdbed as a local gauge theory with the U(1) grasgauge

group.

These two interactions have, in principle, an iifimange and therefore can be perceived in evgrifta The
other two interactions have very short ranges amdbe experienced only at the level of microphysics

The strong interactionis a gauge theory with the SU(3) group as gaugemrit provides for cohesion of the
atomic nuclei.

Theweak interactiorwith gauge group SU(2) induces, among othersgdéoay of neutrons and instable nuclei.

While one may try to pressure also gravitation itht® structure of a local gauge interaction, theéows groups

to be used in these attempts cannot be compactthikegauge groups of the three other interactiqredy
However, despite decades-long efforts, no satigfgjnantization of the general theory of relativityuld be
constructed. As already mentioned, arguments basethe fundamentals of quantum theory suggest that
gravitation is to be understood as the local mataféons of a quantum cosmology. Accordingly, angization
and, in particular, a gauge-theoretical formulatsm®em to be redundant for the general theory etivily. A



different situation applies, if only a linear appimation of this theory is considered, as in ca$ethe
gravitational waves, for which quantization is pbkes *°

As was discussed in a previous artitlethe emergence of the two gauge groups U(1), SE(®) their
mathematical structure can be deduced from thec l@misiderations regarding the fundamental stractfr
guantum theory, that is, the absolute, abstractcasdologically defined quantum information, the IAfts of
the protyposis.

It is important to note that the AQI bits are deloi any specific ,meaning’. In the discussion da&k Holes
the ,information paradox* plays an important réleAfter the transit of an object through the horizif a Black
Hole, at most the mass, angular momentum, and elwdrtpat object can be recovered, whereas alr cibrts of
significance associated with the object are iregtably lost. This loss of meaningful informatiorréderred to as
the information paradox. What is left out of corsation here is the fact that the objectizable pathe AQI
bits constituting the object can still be determdindowever, this refers to free-of-meaning quanhits

This discussion shows that the distinction betwier-of-meaning quantum information, being an otjec
guantity, and meaning, always comprising subjecte@notations, is essential; without such a distinc
problems of comprehension will arise by necessity.

The information paradox is due to the mix-up oftive notions — which to avoid the different desitjoras have
been introduced. Objects falling into a black htd&e the AQI bits of the protyposis — i.e. the dquam
information they represent — with them into thesiidr. However, any ‘significance’ resulting frotmet context
of their description gets lost, because any corigekiterrupted by the existence of the horizon. t8e abstract
and free-of-meaning information of the AQI bits\sues this process, whereas the significance doesurvive.

As already stated, the AQI bits are, for mathenaatieasons alone, the simplest possible structwtgn
qguantum physics. Disregarding such insights inte gfuantum theoretical contexts, one will obvioubky
inclined to search the simple in the spatially $pmalline with the millenia old tradition.

» The discussion about the fundamentals of the det&mmi of nature is aggravated by the ancient pieguthat
simplicity is to be found in spatial smallness.

And yet, the quantum theory has demonstrated simme than 100 years that this is an etfdf.one tries to
approach the problem of interactions with the piigje of smallest elementary components, there lvéllno
solution. Things look more promising using the ppaisis concept, which leads to the actually simples
structures, and which, by the way, has also allowedo explain, in an almost trivial way, the infation
behaviour at and in black hol&s.

The various attempts to unify the three (non-gedidhal) interactions within a single one, by imdueging
increasingly larger groups (which contain the memed three local gauge groups as sub-groups), tdatradl
lead to simple structures. Instead, an inflationingireasingly complex particle constructs can b&tnegsed,
where the exemplars — in case they can be genesafedimentally at all — prove to be ever less diasaever
more energy-rich and more complicated. We definitdb not deny the possibility to generate systems
experimentally of such a complexity as predictedthnyse theories. However, the case of actually leirapd
thus fundamental structures is a different matter.

For the derivation of the interaction structur@swhich the force quanta can appear as real pestiolspace and
time, i.e., for the weak and the electromagnetieraction with the gauge groups SU(2) and U(1)peetvely, a
recourse to the complex number structure at the ebguantum theory was not needed.

However, that structure is essential if all thre@ige groups are to be treated. Then it has to bs&idered that
the quantum-theoretical description of nature an®tm a kind of “double-entry bookkeeping”, accangtfor

both the ‘facts’ and the ‘possibilities’. Crucialtg this end is the use the complex numbers, whicla, way,

may be interpreted as a duplication of the reallrenn
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4 Why is quantum theory defined on the field of the complex
numbers?

In a talk at a conference dedicated to the 100thdry of Erwin Schrédinger, Chen Ning Yadhguoted from a
lecture on quantum mechanics given by Paul Dirde fbpic here is the non-commutability of operatoften
presented as the essential feature of quantumytiredhe literature. Dirac said

“The question arises whether the noncommutatiacieatly the main new idea of quantum mechanicsviBusly |

always thought it was but recently | have beguddabt it and to think that maybe from the physjmaint of view,

the noncommutation is not the only important ided there is perhaps some deeper idea, some déepegecin our
ordinary concepts which is brought about by quantueehanics.”

Dirac then continued, according to Yang, as follows

“So if one asks what is the main feature of quantunechanics, | feel inclined now to say that it ist n
noncommutative algebra. It is the existence of pbiity amplitudes which underlie all atomic proses. Now a
probability amplitude is related to experiment baty partially. The square of its modulus is sonregtthat we can
observe. That is the probability which the experitaé people get. But besides that there is a ptaseimber of
modulus unity which can modify without affectingetBquare of the modulus. And this phase is all mapbd because
it is the source of all interference phenomenaitsyshysical significance is obscure.”

How can the emergence of these complex numbersyisigs be rationalized? Let us recall that clasgbgsics
is the physics of objects and facts. Its measuabaes are facts and thus represented by real nstHber

However, in everyday life it is natural that notlyfacts but also those possibilities we expectseaeffects.
Quantum theory as the “physics of possibiliti€$s to be understood as taking into account thdiriizn that even
in the inanimate nature future possibilities caeate effects in the present.

Also within classical physics, possibilities areamfurse discussed. However, here possibilitiesmaeely the
consequence of insufficient knowledge of an ‘obserdescribing the system. Irrespective of whetthery are
known, the facts are entirely fixed and well defireccording to the model of classical physics. &ample,
this applies to the statistical description in slaal statistical thermodynamics.

It should be obvious though that the insufficienbwledge of an observer does not in any way affeztactual
behaviour of the system.

This is in striking contrast to the possibilities guantum theory, which can be designated as meattmal,
because they can actually effectuate somethinig. therefore important for their description thiagy are not
represented on the same number axis as the redlensmabelling the facts.

Here further explanation is required. Possibiliiesierating actual effects refer necessarily tduhee. That is,
here the time evolution of the wave function isatalj and the use of complex wave functions becomes
mandatory. In the time-independent (static) mode,cbntrast, wave functions can be and often aré rea
functions, as already a cursory look at textboaksquantum theory will show. For example, the energy
eigenstates of the harmonic oscillator are reattfans, as is the ground state of the hydrogen atitve
degenerate energy eigenstates can be chosen reallahough then they are no longer eigenfunciohthe z-
component of the angular momentum). In principle; square integrable (and continuous) real functiam be
interpreted as a permissible wave function. Theetttapendent Schrédinger equation (TDSE), goverttieg
time-evolution of a wave function, explicitly intlaces the imaginary unit As a consequence, even an initially
real wave function becomes complex with the ondethe time evolution. Stationary states, that isergy
eigenstates are a special case, as here the tipegdkence of the wave function consists in a trie@iplex
phase factor. A stationary state represents theepoe of a fact, namely, the fact that the systesuraes a
precise energy value given by the respective eneiggnvalue. This fact does not change in the poatis
time-evolution according to the TDSE.

» The possibilities that generate effects require etbing like a “second number axis” for the matheoadt
description.

However, a simple transition into a two-dimensiorll description would not be adequate here, smeeeal
plane the two axes would be completely indepenfitent each other.

For possibilities, however, it is crucial that soafehem can become factual in the course of tiBwefor
guantum theory the two envisaged axes must sombkawlated to each other.

18 yang, C. N. (1987), we thank the Referee for thig hi
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Another aspect of quantum theory is its henadic at unity aiming, structure. Here, a mathemastmicture is
needed that from the outset guarantees such ditiblehaviour.

= The solution for the structure required here hadyelaeen found in the re-interpretation of the two-
dimensional real plane as a one-dimensional commlember ray; in addition it was supposed that thees
functions, which constitute the behaviour of theamum system, must, in principle, be complex
differentiable.

The usual wave functions are complex-valued funetiof real variables, such as the spatial coorééat the
momentum coordinates. The requirement of compl#&rdntiability analytic behaviour ensures the gtial
behaviour of these functions. This property is 8eaey to obtain a henadic structure. Note thatthkso
scattering matrix is required to be analytic.

The basic importance of analyticity of the statections has been recognized earlier. In 1959, Eaiyigner
gave his famous talk on “The Unreasonable Effeatgs of Mathematics in the Natural Sciences".

In striving for an answer to Wigner's assessmestuas to consider the following: Mathematics can be
understood as the science of possible structunelsplaysics as the science of the structures autingture.
Structures in physics? emerge as a result of depumassential and ignoring certain aspects of énticpilar
phenomena in the particular situations. Accordinglis hardly surprising that the structures death in
physics, if actually understood, can be treatecherattically.

In the mentioned talk Wigner characterizes the turarphysical contexts as follows:

Let us not forget that the Hilbert space of quantanathanics is the complex Hilbert space, with antiteran scalar
product. Surely to the unpreoccupied mind, compiarmbers are far from natural or simple and theynoaibe
suggested by physical observations. Furthermoesyse of complex numbers is in this case not alzdional trick
of applied mathematics but comes close to beingcassity in the formulation of the laws of quantomachanics.
Finally, it now begins to appear that not only nemsbbut so-called analytic functions are destiepldy a decisive
role in the formulation of quantum theory.

The requirement of analyticity is important for thederstanding the fundamental features. Structieesing

thereof appear, for example, in the so-called sg#cqunantization, briefly addressed below. For pcatti
purposes, though, that requirement needs not nighyde maintained. Often it is useful to simplsoblems by
applying suitable limits. Such mathematical simgiifions, possibly even allowing for exact soluipmay,
among others, serve pedagogical purposes as & betstrate essential physical structures andotteaviour of
guantum systems. A well-known textbook exampléhés particle moving in a rectangular potential while

this model allows one to understand important ptalsaspects, such as the behaviour of energy eafygzs for
confined particles, other features get lost asrseguence of the limits supposed in the modelatare, there
are no such things as sharp edges or infinitely lpigtential walls, however easily and sensibly thegy be
postulated in mathematical contexts. Obviouslyhspmnatural® postulates can and will be at oddthwhe

requirement of analyticity. .

Often it proves useful to allow coordinates to bmeccomplex. In scattering theory virtual partickes referred
to as off-mass-shell. Heré Br i become negative, which means imaginary energyrardentum values.

Moreover, imaginary coordinates allow one to chabgeveen a quantum and classical description. Aliegr
to the paper ,Complex Coordinates and Quantum Mackaby F. Strocchi:

JFor example, the correspondence between Poissmkéts and commutators is not arbitrary: the Poissacket of
two "classical” phase functions is in fact the mealue of the commutator between the corresponoiiegators. 2°

This shows once again that quantum theory is theeraocurate description of the reality, and cladgtysics
providing an averaging thereof.

The use of complex coordinates has proven usefiligrfield of atomic and molecular physics as wéllln the
treatment of metastable states, for example, tleeggnaquires an imaginary component. Due to thentgua
theoretical equivalence of the spatial and momentepresentations, analytical behaviour is suppogitid
regard to the spatial coordinates as Wéll.

The analytical structure is the mathematical edaivtato holism, being the distinctive feature ofagtum
theory.

19 Wigner, E. P. (1960), we thank the Referee for s

20strocchi, F. (1966)

2 See e.g. Rescigno, T. N., McCurdy, Jr. C. W. and,@reE. (1978); Moiseyev, N. (1998);
2 Reinhard, W. P. (1982)



Very generally speaking, a holism is also foundhi@ so-called Lie groups. These groups are chaizetieby
the fact that a small neighbourhood of the idenétgment is sufficient to derive from it the whaeoup
structure. In this sense, Lie groups can be seargaseralization of analytic functions.

An advantage of the analytical functions is thaytlallow for a representation of stationary staesh that a
complex phase is changing while an associated égi@t value remains constant. Then possibilitieesy m
change for a system, while the factually recogrzadtate might appear as unchanged. In other words,
possibilities can be in stationary modes. Such itimm$ could be designated as virtual changes feztially
appear as static.

Since quantum theory is certainly a genuine sdientfeory, i.e., it represents a deterministiausture, the
description of the quantum systems has to be mgdssibg functions that allow for such determinigticucture
by satisfying a differential equation with regaodspace and time coordinates.

Here it has to be recalled that in quantum thebeydeterministic development refers to possibdjtieut not
facts, which may become real within the scope cdiblgawith the possibilities.

» Probability calculation is carried out in quantunedry by exceeding the field of real numbers andking
likewise with complex numbers.

This expansion of the numbers is obtained by adtlisgmaginary unit »ic, the square root of >-In.this way,
guantum theory takes into account that these ressibilities achieve effects and may influence eattfer,
since they are objective and not merely reflecting lack of knowledge of an observer. For example,
interaction of possibilities may make otherwisegiole facts impossible.

As the well-known double-slit experiment shows, loten or an electron behaves differently depending
whether it can move controlled or uncontrolled tighb the slits. When both slits are open and norobof the

passage is in place, then there is the effectcr@ain spots on a detection screen will not betred, although
the very same spots are accessed by the parficekyione of the slits (irrespective which) is ope

For a description in terms of a differential eqaatifor complex functions, the functions must be ptax
differentiable. This means they have to comply wlith Cauchy-Riemann differential equations:

Bef(z) a function of the complex variables x + iy,
f(z) = f(x.y) = f(x + iy) = u(x,y) +iv(x,y) 1)

It is then necessary for the differentiabilityf(f) that the following applies for the two real furmstsu andv:

It is generally known that a complex differentiablaction can be differentiated as often as desitezhn thus

Ou Ov

%(w’y) = a_y(m,y) (2)
ou ov

a_y(mvy) = _a_:c(wvy)

be developed into a power series and is then datgidras analytical function:

f=)a,2" 3)

n=0

» This series expansiois not only an interesting mathematical structitr@jso has a physical equivalence in
the form of the so-callesecond quantization

The essential feature of an analytical functiothit any piece of it defines the entire functiohherefore in
mathematics the analytical functions represent hbkksm that distinguishes quantum theory from dtads
physics

The structure of the so-called “second quantizatismich however represents the basic structurguaintum
theory at aff®, becomes visible in the clearest way, when thekBpace representation is used. Here the state
spacen of a quantum field is represented as an infinita ®ver the state spaagsof n quantum particles.

H=0H, (4)
n=0

2 G6rnitz, Th.(1999)



The n-particle state spagegis the tensor product ofone-particle state spaces

Depending on whether it is a Bose or a Fermi fithld, state spaces are still to be symmetrized or anti-
symmetrized.

H,=0H,=H,0H,0..0H, (5)
1

The changes of the states of a quantum field a@@r@sl by generation or annihilation of those st that
were introduced as field quanta.

This series structure represents a central aspegciamtum theory. Essentially in such a way a quanparticle
can be constructed from quantum bits, the actsithplest quantum structures.(see also appendix 1)

5 Interaction implies a division into separate spaces

* To introduce interaction it is furthermore neceggar'break up’ the henadic (= aiming for unityjstture of
guantum theory, since ultimately the term ‘intei@ttis useful only for things separated from eather®

Interaction implies separated objects. According@lys the natural structure of classical physiepresenting
reality as an accumulation of separated objects.

Since the beginning of theoretical mechanics itlheen known that for the description of the intécacof two
point masses, each mass requires its own coordspate.

The simple case of two interacting particles incgpas usually treated by re-writing the problemténms of
center-of-gravity and relative coordinates. Hergs ieasily overlooked that each particle has aespdcpatial
and momentum coordinates of its own. Accordinguoywew and in nature both particles are placedifédrent
locations in the same space, while in the mathealatiescription each occupies its own ‘cosmos’ of
coordinates. The action of force due the otheriglartirises, so to say, from another cosmos. Tbezeft is
necessary for the description of the interactiora gfarticle with an outer force to provide — in &idd to the
Minkowski space — another space from which the rijgtsen of force action can be constructed.

In the following it will be shown how the interamti terms of the three gauge groups are created tingsm
separation and, in addition, from the involvemehthe possibilities, for which quantum theory shatat, in
addition to facts, they can generate effects ak wel

It has already been explained that the mathemattoatture of quantum theory is incompatible witbhcacept
of interaction?® Even if a description was started with two semamtjects, the tensor product structure of
guantum theory would ensure that a new unity wdnéldtreated — and the idea of interaction make®nsesfor

a unity. This means that a separation into two aibjés mandatory in the sense of the dynamic lageri
structure?’ and the tensor product structure of quantum theougt not be fully applied. Since the very
beginnings of quantum theory Bohr has been ingjdiirat classical physics is indispensable in otdespeak
about quantum theoretical results. Moreover, aipeegnalysis shows that a strict concept of intevacan only
be formulated within the mathematical frameworkclafssical physics. On the other hand, it is evidbat the
existence of all the objects described by clasgibgbkics can only be explained by quantum theohys Theans
that for a good description of nature we need Ipattis of physics, classical physics and quantunsiply This
mutual relationship is referred to as “dynamic layg structure” or, referring to the dynamics inese
phenomena, as “dynamic layering process”.

Of course, while insisting in the quantum theowdtignity, one should not throw the baby out witle thath

water. For example, in the treatment of the pratattron interaction in a hydrogen atom one nowynasorts

to the classical Coulomb potential, governing thatiom of the electron. Obviously, possible tensoucures

are entirely irrelevant here. This applies to atoand molecular structures, in general, where tmdgreasons
the pertinent approximation procedures avoid aggaeted ,unity picture. In all electromagnetit¢aractions,
such as encountered in chemistry, the interacti@ngths are much too small as to envisage thergtoe of

massive particles; and also effects of quantund fieéory are so small that they safely can be oéglein most
cases.

24 Gérnitz, Th., Graudenz, D., Weizséacker, C. F. 99¢), Gérnitz, Th., Schomécker, U. (2012)
2 Gornitz, Th. (2014)

2 Gornitz, Th. (2014)

27 Gérnitz, Th. (1999) Kap. 5; Gornitz, Th., Gornikz, (2002) Appendix 14.4; Gérnitz, Th. (2010)



In a very accurate description of the hydrogen atthrough, it becomes apparent that it is not singlywo-
particle system“. Then the Coulomb field of nucleusl electron proves to be an ensemble of virthatqns
and virtual electron-positron pairs. For this systeow to be described as a whole, the notion trattion
becomes problematic.

6 Actually elementary structures establish the structure of the space-time

Carl Friedrich v. Weizsacker was the first to ptegieithat the three dimensions of the physicalasitppn space
are a necessary consequence of quantum tH&ory.

Nowadays, this understanding can be formulatedlasafs: All states of a quantum bit of the protyjsospan an
irreducible representation of the two groups Ufid 8U(2).

It follows from the theory of the compact groupsittfall irreducible representations of such a groap be
realized in subspaces of that Hilbert space gee@iay the square-integrable functions on the paiemspace of
this group. For this purpose, it is necessary tesitter this group as its own maximal homogeneoasesp

The SU(2) group manifold is the three-dimensionaface of a four-dimensional sphere. Accordingilge lin
Weizsécker’'s Ur-theory, the protyposis concept imttnat the SU(2) group establishes the matheimatic
description of the cosmic position space.

This assumption is supported by the group-theakfeature implying that everything that can berespnted
by quantum bits, i.e. all quantum particles andntuia fields, can be represented by functions os ieximal
homogeneous space of the group SU(2).

From three physically plausible assumptions a cdsgyofollows that matches the observational dat amd
from which the validity of Einstein’s equations dag concluded® For this cosmology, it is sufficient to demand
the following:

» The Planck relation of an inverse proportionalitgtvizeen characteristic length and energy is gererall
applicable. (With increasing energy, the [Compteajelength decreases.)

» There is a distinguished speed (which is usualbigiated as vacuum speed of light

* The first law of thermodynamics is validy + pdV = 0.

From these requirements, the definition of a ursiakcosmic time results, and, further on, the RisberWalker
metrics of a closed cosmos that is expanding vtred of light referred to this tim&

7 Introduction of interaction

Interaction is a conception valid for distinct adifein space, i.e., particles or fields. Quantusfdftheory shows
that quantum fields can be understood as assensbtdgpiantum particles. Thus the essence of irtieracan
be understood if the interaction of particles hesrbexplained.

As was established some time ago, there is a washioh quantum particles can be constructed froantum
bits. A short exposition is given in the appendix 1

We have already discussed the specific statusavfitgtion, which is expediently not to be formuthés gauge
theory. In the following, the three other typesniéraction shall be treated.

To get access to these types of interaction, we séarted from a quantum particle in the Minkowsiace®
The quantum particles shall be defined as elemgmthjects. This means that no possible internaicstres
need to be taken into account. Their states cachbeacterized according to irreducible represesatiof the
Poincaré group.

Normally, the starting point for the descriptioninferaction is the interaction-free movement. &se of a free
particle, the possible translations are generatethb momenta. In the quantum-theoretical desonipttheir
generators are the derivatives referred to theespame coordinates of the Minkowski space.

P= -i a/an (6)

28 \Weizsacker, C F v, (1955, 1958, 1985, 2006)
2 Gérnitz, Th. (1988a), (1988b)

30 Gérnitz, Th. (2011b)

31 Gérnitz, Th. (2011b)
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Now one can reflect about how the concrete forthefmomentum changes, when there are forces.

7.1 Electromagnetic and weak interaction

The treatment of electromagnetic, weak, and stiotgraction in terms of local gauge interactionghwthe
gauge groups)(1), SU(2), and SU(3xespectively, has proven empirically well founded & long time. At the
core of this description is the replacement ofuitbeal derivative by a covariant derivative

olox, = olox+ AST? (7)

Here theT? denotes the generators of the Lie algebra ofébpactive gauge groups. As mentioned in Chapter 1,
so far there is the issue why exactly these theegyg groups are required and how the transitisghe¢@ovariant
derivatives can be rationalized. Another issudésfact that the gauge bosons for U(1) and SU(@)agpgpear as
real objects in the vacuum, whereas the gauge Basfo8U(3) have to be described as virtual padjdieat is,
structure quanta.

As explained in Chapter 5 and discussed, at gréeneth, in a previous paparin establishing interaction the
AQI bits forming the particles are associated waittother ,cosmos of description‘ than the AQI biengrating
the interaction.

Addressing this point, we have demonstrated thet W{l) and SU(2) group generators associated with
displacements in the maximal homogenous spaceeskthroups, i.e. the group manifold itself, mugtnaent
the momentum generators of the Minkowski space.

The parameter space of the U(1) group is one-dimmeak that of the SU(2) group three-dimensiondle T
related generators of the Lie algebras shall bigydated using and<®. The generatorg of the SU(2) can be
represented by the well-known Pauli-matrices. ésgeappendix 2)

As is generally known, a group element in the nieggithood of the group unit can be approximatedterU(1)
group by

g=exp{iAt}=1+iA: (8)
and for the SU(2) group by

g=exp{ZB,*} =1 +iXB,7® 9)
if the series expansion of the exponential functiotmuncated after the first power.

e From the coupling of the momentum in the Minkowsgace, i.e. the translations that lead to a chafige
location there, with the “translations” in the gestry of the interaction partner, a substitutiorutissfor the
momentum operator with the following form:

P*— -idlox + gi A+ g, BS 7P (10)
with g; andg, being two coupling constants, which cannot be gripecified from the considerations made so
far.

As has been known for a long time, the descriptafrtbe weak and of the electromagnetic interaciiotie
Minkowski space lead to this structure.

» The protyposis concept of fundamental and simgjaahtum structures affords an explanation of eyxadbis
form of the interaction.

However, in the case of strong interaction, thesesitlerations are not yet sufficient.

7.2 Strong interaction

e The strong interaction differs from the weak and #iectromagnetic interaction in that here all gleh
interactingparticlescollapse.

The only thing known for sure about quarks and gfuis that they do not exist, at least not asdigects in
space and time.

» Of course, quarks and gluons exist as incorporstiettures, and without them the internal strucaure the
interaction of the hadrons would remain incompreiiga.

The attempt to isolate a quark leads to the fonadi a quark-antiquark pair at the ‘breakpointisS'means
when trying to release a quark, always a mesonbsilproduced, i.e. a quark-antiquark structurerttains to
be established that quarks and gluons have ortlyabiexistence.

33 Gornitz, Th. (2014)



» However, one of the fundamentals of quantum thdmming that not only facts but also possibilities ca
create real effects, it must be anticipated thatghark-gluon structures are very significant i description
of the physical processes.

Of course, they have to be understood as genuiaetgon phenomena, reflecting the possibility chardstics
of quantum theory.

In contrast to the weak and electromagnetic intemacwhere forces are transmitted by real quamtspace and
time, we here have to rely exclusively on virtuahqta.

In analogy to the extension of real to complex narshin the full quantum description, this suggéstsostulate
a duplication of the structures associated with ititeractions based on real quanta. In the “reantpu
interactions” we have an SU(RJ(1) structure, which then would have to be dupéda In appendix 2 it is
shown that the four-dimensional group SW2)(1) is a subgroup of the group SUE3).

So the question arises how the transition from $hi2)xU(1) structure to a SU(2)xU(1) plus SU(2)xU(1
structure is to be interpreted. The answer is @mpMe are led exactly to the SU(3) structure.

The SU(3) group is an eight-dimensional compactigr@and a parameterization of SU(3) can be obtaivtédh
matches the duplicated structure of the SU(2)xd(tups.

Such a structure is called the Cartan decomposttiBor a groupG with the Lie algebras and a subgroup K
with Lie algebra, the coset being, there is the Cartan decomposition of the Lie lalg6& if

G=K+P (11)
with
kCK and pCP 12)

and if the corresponding structures hold for thergints
[k.k]OK [p.p]OK [k.p]OP (13)
In caseK andP have the same dimensidd,can, as manifold, be a copy Kf In this case the structure (13) is
the same as in the relations (14) for real and in@ayg numbers:
real x real =real , imaginary x imaginary = realandreal x imaginary = imaginary (14)

The eight parameters of the SU(3) shall be desighdily the vectoro(p,y,0,a,b,cp). We follow Byrd's
representatiart®

Dropping the redundancies, we arrive at the follayyroduct representation,
D(,pr.6.a,,c0) = 73028 (1231) i150) (132) (i22b) (130 (28¢) (15)
for an arbitrary element D of SU(3). This can béten as
D(0.B.y.0,a.0,c9) = D)(a,p,1)e 5D b,c) £780) (16)

where again the D denotes an arbitrary elementg8% and 62) is an arbitrary element of SU(2) as a subset of

SU(3). The); are 3x3-matrices, therefore also D ar@)[are 3x3-matrices (see appendix 2). The elements wit
A1, A2, A3, @andig belong to the subgroup and from it withis the elements of the codetan be created. The two

exponential functions (B‘S(P) and éi%e)describe the two U(1) manifolds as subgroup ancktcas SU(3),
respectively.

The parametrization chosen by Byrd is referredstqreon-canonical“. The canonical parametrizatiorsuthe
exponential mapping of the Lie algebra onto thaugras indicated in Eqgs. (8) and (9). In the lattese, there is
a convenient relation for the parameters in a caredpeter subgroup:

D(a) D(B) = D(o +B) (17)

With regard to the different parametrizations, amay refer, for example, to the following hints bijrore®”:

34Bdhm, M. (2011), p. 231
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“This parameterization [the canonical] is obtailgdthe EXPonential mapping of the Lie algebra dh®Lie group.
In this parameterization, every straight line ttgouhe origin of the algebra exponentiates ontme-dimensional
abelian subgroup.

To obviate the impression that noncanonical paranzettions are anathema, we propose now to dealavitumber
of them. This is not an empty academic exercisehawe a number of motivations for such a discussion

1. Mathematical reasons. For one thing, it is ofiéficult to construct the canonical parameteiizatof a classical
Lie group using the EXPonential mapping. It is ewgore difficult to construct canonical matrix repeatations of a
group by the canonical mapping of the algebra'sressmtations onto the group's representations wieh
EXPonential mapping.

2. Physical reasons. We will eventually want tooaigte physical opera-tors with elements in Lieebhlas and
groups. For instance, it is often useful to assedhift-up and shift-down operators like J+ andvith operators in a
Hamiltonian which cause transitions to higher aneldr energy levels. Then it becomes necessarynpote matrix
elements of ordered operator products within paldic representations. The existence of noncanonical
parameterizations allows the construction of geimgafunctions for products of operators in normehd
symmetrized orderings.”

In a particular case, one will chose the paranetion that is best adapted to the situation. Oftés will be a
canonical parametrization. The advantage of Bynd's-canonical parametrization is that it makes fieahithe
SU(3) product structure according to Eq. (16), beientral for our considerations, and, moreoves,ahalogy
to the formula (14).

Since SU(3) is semi-simple, it has only one coreedatomponent. Thus the given parameterization &) (1
covers the whole group.

» Formula (16) is crucial for our considerationsinidicates precisely how the protyposis conceptdaasito
the SU(3) structure of the strong interaction.

To establish the ,acting possibilities' in quanttimeory a duplication of the manifold of real numbéad to be
introduced together with the Cartan-type producticstre (14). This entailed the complex numbersain
entirely analogous way, the space of the protyp@s® bits associated with the interaction, thattle

SU(2)xU(1) manifold, is to be duplicated and enddwsth the Cartan structure (13). As a result, ob&ins an
additional interaction, which, being quantal, amtdy via virtual or structure quanta, and is repréed by the
SU(3) gauge group.

The formula (10) for the electromagnetic and weagkraction is to be supplemented with the genesafoof
SU(3) yielding

PX — -idlox + g A1 + g, B2+ g3 CA? (18)

It should be emphasized once more that the SU(Btsre can be explained as resulting from a quantu
theoretically motivated duplication, analogoustte transition from real to complex, which appliegte case in
which the interaction is mediated by virtual rathiean real quanta. Accordingly, quarks and gluoasnot
appear as free particles in vacuum, just like phsnoannot appear outside a solid. Nonethelesssuah
guantum structures produce real effects.

Appendix 1 Quantum particles from the quantum bits of the protyposis

* A gquantum particle is defined by a fixed mass arerain spin, and by the fact that all its stafpan an
irreducible representation of the Poincaré group.

First it is necessary for this mathematical strietio define operators for the generation and alatidmn of the

guantum bits. One of the symmetries at these quabitts is the complex conjugation, which effectsoacalled

anti-linear representation. So it could be seery \early® that it is useful to allow linear representation b

duplication of the state space. Weizsacker spoketalrs and anti-urs in this connection.

The operator generating a quantum bit shal@eand the operator annihilating a quantum bitldtek,. .

To construct also massive particles, it is necgsgaintroduce parabose commutation rules for theegation
and annihilation operators

%8 See e.g.: Weizsacker (1985) p. 406



i{a.a}, al=-d.3

{a.a} al=Ka.a)}a1=0 (19)
The state indeg or r or t can range from 1 to 4.
The effect on the vacuum of the protyposis thenltess:
aa/|Q)=3.pQ) (20)

with [Q> being the vacuum of protyposfsthe parabose ordgr=1 the Bose statistics.

The vacuum in the Minkowski space, the Lorenz vacyd, is an eigenstate of the Poincaré group with zero
mass, energy and spin. While all other irreducitdpresentations of the Poincaré group span anitevin
dimensional state space, the Lorenz vacuuntcd@responds to a representation with a one-dirnaakistate
space.

» This vacuum can be characterized by the findingbgparticle is to be found at each of the inéhitmany
points in the Minkowski space.

The particle vacuum in the Minkowski space shatveeas simple example for the relation of quanitizato the
analytical functions. This vacuum is — like a “n@lfnparticle state — also an eigenstate of the ¢ group. It
proves to be an infinite sum of states of quantits) iwhich are generated frof@3, the vacuum of the quantum
bits of protyposis.

= o "% (afal+ala’ V' ala +afal ) °
9=3 3¢ (afa] asaij (az : 4a2j Q) o

2 & nm | 2 2
For the Lorenz vacuum, the annihilation of a quamhit corresponds to the generation of the relatadqubit.
a|0)=-&[0)  a[0)=-a]0)  a|0)=-a|0)  a]0)=-a0) (22)

In the same way, but much more complicated tharvéloelum of the particles, the state of a quanturtigha
with rest mass can be represented as a Fock repatiea of states of quantum bits. An exampshall be the
state of rest (momentum = 0) of a fermion with masand spin %2 in z—direction.

Due to increasing complexity, processing by medana oomputer and with an adapted notation seenixto
appropriate. For this purpose, notation has beaptad to an application in mathemati¢a@vith “Erzeuger” =
generator, “Vernichter” = annihilator).

‘
a, = €r] (Erzeuger) (23)
a, = v[r] (Vernichte r)

{a',al} = 2 f[r, 5] {a,,a.} = 2w[r,s]

{al,a} = 2d[r, ] |0) = Ivac

With this computer-adapted notation, the ten gdnesaf the Poincaré group are given the followfmgn:

Translations:

P1 = (-w[2,3]-[3,2]-w[1,4]-f[4,1] -d[1,2]-d[2,1]-{4,3]-d[3,4])/2

P2 = I*(-w[2,3] +[3,2] +w[1,4]-f[4,1] -d[1,2] +d[21]-d[4,3] +d[3,4])/2
P3 = (-w[1,3]-f[3,1] +w[2,4] +f[4,2] -d[1,1] +d[2,Rd[3,3] +d[4,4])/2
PO = (-w[1,3]-f[3,1]-w[2,4]-f[4,2] -d[1,1]-d[2,2]-€B,3]-d[4,4])/2

39 G6rnitz, Th., Schomacker, U. (2012)
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Boosts:

M10 = I*(w[1,4]-f[4,1] +w[2,3]-f[3,2])/2 (24)
M20 = (w[1,4] +f[4,1]-w[2,3]-f[3,2])/2

M30 = I*(w[1,3]-f[3,1]-w[2,4] +[4,2])/2

Rotations:

M32 = (d[2,1] +d[1,2]-d[3,4]-d[4,3])/2
M21 = (d[1,1]-d[2,2]-d[3,3] +d[4,4])/2
M31 = I*(d[2,1]-d[1,2]-d[3,4] +d[4,3])/2

The state of this massive particle turns out agitefsum over differently weighed states of quamtits. In this
specific case, they comply with parabose symméthe parabose order p[0] is greater than 1. (Onlgstess
objects can be generated with Bose symmetry). Vhabsls p[i] designate powers of the individual cers.
The symbol * is used to identify the commutativeoquct of numbers, and ** is used to identify a non-
commutative product of the generation and annibitabperators. As an example we give the staternssive
fermion with massn at rest. The momentum at rest is PO=m, P1=P2=R8wDthe spin in z-direction is=1/2.
The expression has two parts:

o ) ) (_1) (p[1]+ pl2]+ p[3]) (m) (2p[1]+ p[2]+ p[3])
péo péo péo p[1]! p[2]! p[3]! (2 p[1] + p[2] + p[3] + p[O] )!
(p[1]+ p[2] + p[3] + p[0] -1)! %
(p[L]+ p[3] + p[0] -2)! (p[1] + p[2] + p[O] -1)!
e[1]**f[4, 2,p[3]]* * f[4, 1,p[1]]* * f[3, 2,p[1]]* * f[3, 1,p[2]] * *Ivac (25)

o ) ) (_1) (p[1]+ p[2]+ p[3]) (m) (¥ 2p[1]+ p[2]+ p[3])
+
péo péo péo p[1]' p[2]! p[3]! (2p[1] + p[2] + p[3] + p[0] + 1)!
(p[1] + p[2] + p[3] + p[0] -1)! %
(p[1]+ p[3]+p[0] -1)! (p[1] + p[2] + p[0] -1)!
e[2]**f[4, 2,p[3]]* * 4, 1,p[1] +1] * * f[3, 2, p[1]]* * f[3, 1, p[2]] * *Ivac

Appendix 2: Remarks on the structure of the SU(3) group

In his paper “The Geometry of SU(3)'Mark Byrd gives an overview on the geometry of gheup manifold of
SU(@3).

With the “Euler angle” parameterization, presenbgdhim, we can connect the structure deriving frthma
protyposis concept with this gauge group.

The Lie-algebra of the group is often representethb 8 Gell-Mann matrices, nami&d They provide the most
common representation in terms of 3 x 3 hermitie@teless matrices.

&
|
~
oo
coocoo

0
0
0
1 00 —i 000
o, =00 0|, Xx=|001], (26)
0 i 0 0 010
0 0 0
1 0
0

Abb. 1: The Gell-Mann matrices of the Lie algebra of SU(3)

“1 Byrd, M.: (1998)



The matrices,;, A, andA; are the Pauli matrices of SU(2), extended by @ tiie and column. The matri,
the generator of U(1)commutes with,, A, andis. Accordingly, SU(2)xU(1) is a subgroup of SU(3).

The whole set commutation relations can be liste@dbular form as follows:

T2 % [ % [ & [ % [ % [ A [ % |
i 0 2is | —2idg |  iAg —i)g s —idg 0
Az | =225 | D Yixyg ide iy X4 —F e 0
Xall 262 | =2Zix | © iXs - i iXe 0
X [ =2z | —ide | =535 0 ids ido it | —iv3)s
+iv/3)s
Xs | ixe | —ihs | X —i)ds 0 —i) —idy | V3N (27)
—iv3)\s
As | —ids | 4hy iy —iXs i\ 0 —iXs | —8/3)y
+iv/3)s
Xr | X ihs | =g | —iXg ido ids 0 iv3Xe
—iv/3)s
e 0 0 0 ivV3Xs | —iv38Xe | iV3BAr | —iv/3)e 0

Abb. 2: The entries in the table are given by commuting the element in the first column with the element in
the top row: [element from first column, element from top row] = element in table at the
corresponding position.
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