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Abstract 

It is very useful to distinguish between four types of interactions in nature: gravitation, and then 
electromagnetism, weak interaction and strong interaction. The mathematical structure of electromagnetism but 
also of weak and strong interaction could be understood as induced by a local gauge group. The associated 
groups are the unitary group in one dimension – U(1) – for electromagnetism, the special unitary group in two 
dimensions – SU(2) – for the weak interaction, and the special unitary group in three dimensions – SU(3) – for 
the strong interaction. The essence of this article is to give a “first-principles” explanation for the three gauge 
groups.  

1 Introduction 

Countless experiments have shown that it is very useful to distinguish between four types of interactions in 
nature.   

The oldest one treated in physics is gravitation. Since Newton’s days, it is clear that this force manages the 
interactions between all astrophysical objects. Its range is infinite. Later on, the theory was partially replaced by 
Einstein’s theory of general relativity.  

By the end of the 18th century, the physicists had learned more and more about electricity. At the beginning 
of the 19th century, it was evident that electricity and magnetism are connected. In the middle of the 19th century, 
Maxwell then clarified the mathematical structure of electromagnetism. 
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In the middle of the 20th century, it became clear that it is possible to decompose the atomic nuclei into 
protons and neutrons. Therefore a force has to exist which is much stronger than the electromagnetic force and 
which is able to hold all the protons inside the nucleus – which repel one another by their electric charge.  

On the other hand, the decay of the neutron and especially the discovery of the neutrino have given the hint 
for another interaction, the weak interaction.  

Experimental results, at first from interactions of electrons with protons, showed that there are structures 
inside the proton. Today these structures are named quarks and gluons and are often described as “particles”. The 
theory of strong interaction explicates now the behavior of quarks and gluons and the resulting forces between 
protons and neutrons. 

Towards the end of the 20th century, it became clear that not only the mathematical structure of 
electromagnetism but also of weak and strong interaction could be understood as induced by a local gauge 
group. This means that the interaction shows symmetries, which are allowed to be differently oriented at 
different points in space.  

The associated groups are the unitary group in one dimension – U(1) – for electromagnetism, the special 
unitary group in two dimensions – SU(2) – for the weak interaction, and the special unitary group in three 
dimensions – SU(3) – for the strong interaction.  

With these three compact groups, the relevant structures that rule the related interactions can be described.  

There are also efforts to apply the conception of a gauge group to gravitation. Various groups have been 
proposed which should solve the problem for the gravitational interaction. As a further complication, the use of 
non-compact groups is inevitable here. So far none of the envisaged Lie groups have afforded a successful 
solution, and the issue of the quantum theoretical description of gravitation is still seen as open. We have given 
arguments elsewhere, why in the end such attempts will not be successful. 2 

Experimental evidence shows that the respective gauge groups are well chosen, but there is still the need for a 
deeper foundation of their mathematical structures. To the best of our knowledge, a “first-principles” explanation 
for the three gauge groups could not be furnished so far. For instance, H. Lyre states3  

„Am Horizont sowohl der physikalischen als auch der philosophischen Untersuchungen über Eichtheorien deutet sich 
die noch völlig ungeklärte Frage nach einer noch tieferen Bedeutung der Konzeption der Eichtheorien an. Denn 
wenngleich das Eichprinzip – wie gezeigt – nicht zwingend auf nichtflache Konnektionen führt, so ist ja doch die in 
der kovarianten Ableitung vorgegebene Struktur des Wechselwirkungsterms auch für den empirisch bedeutsamen 
Fall nicht-verschwindender Feldstärken korrekt beschrieben. Diese Wechselwirkungsstruktur ist also tatsächlich aus 
der lokalen Eichsymmetrie-Forderung hergeleitet. Was aber ist der tiefere Grund für diese, zunächst rein formale 
Möglichkeit? Scheinbar handelt es sich um einen tiefliegenden und konzeptionell noch völlig unverstandenen 
Zusammenhang zwischen Raum und Wechselwirkung“   

(At the horizon of both the physical as well as philosophical studies on gauge theories the still completely open 
question emerges of the deeper meaning of the conception of gauge theories. While the gauge principle – as shown – 
does not necessarily lead to non-flat connections, the structure of the interaction term, as determined by the covariant 
derivation, is correctly described even in the empirically significant case of non-vanishing field strength. This 
structure of the interaction is, in fact, derived from the requirement of local gauge symmetry. But what is the deeper 
reason for this, so far only formal, possibility? Seemingly, there is a deeply rooted and conceptually completely 
unexplained relationship between space and interaction.)  

Even years later the situation appeared not to be more satisfactory. Norbert Straumann stated4: 

„Das Standardmodell hat aber noch andere unbefriedigende Züge. Das beginnt schon damit, dass wir nicht verstehen, 
weshalb gerade seine und nicht andere Eichsymmetrien realisiert sind.“  

(The standard model has even other unsatisfactory aspects. This starts with the fact that we do not understand why 
exactly its and no other gauge symmetries are realized.) 

The purpose of present article is to give a “first-principles” explanation for the three gauge groups. 

The first-principles explanation will be based on the simplest structure that is imaginable in quantum theory. 
Such structures are absolutely defined abstract quantum information (AQI) bits, which already for mathematical 
reasons are the simplest conceivable structures. The AQI bits are cosmological founded. This is the reason for 
their absolute character. They must be imagined as free of any special or definite meaning. Quantum bits as 
forms of information are normally seen as carrying meaning or connotations. To avoid such obvious 
misinterpretations, for the general discussion the notion “protyposis” (Greek: “pre-formation”) has been 
introduced. The protyposis is an expression for a cosmologically founded absolute and abstract quantum 
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information, being free of meaning. The AQI bits of the protyposis are the most abstract structures conceivable. 
Sufficiently many of them may congregate to form material or energy quantum particles and ultimately also 
acquire meaning.  

In a previous article5 an explanation was given based on the protyposis concept for the two groups U(1) and 
SU(2) as the gauge groups of electromagnetic and weak interaction.   

The different descriptions of interactions almost always use the term “particles”. Even in cases where “fields” 
are addressed, the explanation is based on the insight of theoretical physics since Einstein’s introduction of light 
quanta that the force fields can be understood as structures of quantum particles. 

• “Particles” thus prove to be the fundamental structures when it comes to the discussion of interactions.  

To the present day, the conceptions of particles have been dominating the thinking about the basic structures of 
reality. For example, the official website of CERN states: 

The model describes how everything that they observe in the universe is made from a few basic blocks called 
fundamental particles, governed by four forces.6 

The theories and discoveries of thousands of physicists since the 1930s have resulted in a remarkable insight into the 
fundamental structure of matter: everything in the universe is found to be made from a few basic building blocks 
called fundamental particles, governed by four fundamental forces. ...   
All matter around us is made of elementary particles, the building blocks of matter. These particles occur in two basic 
types called quarks and leptons. Each group consists of six particles, which are related in pairs, or “generations”. The 
lightest and most stable particles make up the first generation, whereas the heavier and less stable particles belong to 
the second and third generations. ...  
The quantum theory used to describe the micro world, and the general theory of relativity used to describe the macro 
world, are difficult to fit into a single framework. 7 

A possible decay of the “basic blocks” does not seem to damage their alleged fundamentality. The fact that 
thinking is similar elsewhere, is demonstrated by DESY, (Deutsches Elektronen-Synchrotron – the German 
electron synchrotron) in Hamburg on their related website:   

What does the world consist of at the smallest level? What are the most fundamental particles of matter? Natural 
scientists have been looking into these basic questions since antiquity. In the course of their search, they have 
encountered ever smaller building blocks – first atoms, then atomic nuclei consisting of protons and neutrons, and 
finally tiny particles called quarks. Today, particle physicists are investigating the fundamental mysteries of the 
universe: what holds the cosmos together, and how do particles acquire their mass in the first place?8 

Taking the conceptions seriously, then something ‘fundamental’ should not have any internal structure nor 
should it possibly be able to decay. 

All this shows how vaguely the term “particle” commonly is defined.  

2 The conceptions of a “particle” and a “quantum object” 

For a particle there is a clear mathematical definition by Eugene Wigner:  

• A particle is defined by the fact that its states span an irreducible representation of the Poincaré group.     

From this mathematical structure it follows that a particle is distinguished by its mass – with values ranging 
between zero and infinite – and by a spin, which may have the values 0 , ½, 1, 3/2, 2, ... etc. 

However, beyond mathematical physics, this definition can hardly be utilized. What does it mean in concrete 
terms? 

The Poincaré group is the group of movements in the Minkowski space, which is the space in which the special 
theory of relativity operates. This means that time is comprised to form a unity with length, width and height so 
that the mutual change of these variables becomes visible in case of movements. 

Furthermore, the mathematical conception of a particle implies that no internal structure can be observed, i.e., 
the object can be treated as a “point particle”. As has been demonstrated previously9, the mathematical structure 
of the state space of such a particle, being an irreducible representation oft the Poincaré group, can be 
constructed from the AQI bits of the protyposis. According to this construction, particles in the strict sense are 
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defined as structureless objects that can move in the vacuum of the Minkowski space. If a quantum object can 
undergo decay, a possibly alleged “structureless-ness” would be questionable. 

Taking all this into account, the light quanta, the photons, can be defined as massless particles. Neutrinos and 
electrons are generally understood as point particles, since no internal structure can experimentally be verified. 
Electrons are stable, and neutrinos do not decay, however, their three types can transform themselves into each 
other. 

Although protons are stable, an internal structure has been known for a long time. Accordingly, the quarks were 
introduced to express this structure. It has to be noted that, on the one hand, the proton is no point particle, and, 
on the other hand, quarks cannot move in the vacuum. 

Given this situation, a further clarification of the terms used here is indicated, to which the following distinction 
of quantum structures may contribute: 

Quanta without rest mass always move in vacuum at the speed of light. The quanta known so far are the photons. 
If there are gravitons as quanta of gravitation, they will also be massless. This is backed by the fact that, in 2016, 
gravitation waves have been observed for the first time by a device on earth. Of course, linearized approximate 
solutions of Einstein’s equations can be quantized analogously to the case of electrodynamics. However, so far 
all attempts to quantize the complete general theory of relativity have not shown any tangible success actually, 
and this speaks against the existence of gravitons. 

Quanta with rest mass are able to stay in vacuum within a small spatial area. Their mass is recognizable by their 
inertia, i.e., by the effort needed to change their respective state. 

Structure quanta represent a particularly interesting consequence of quantum theory. This family includes the 
phonons, the quanta of sound vibrations in solids, as well as the quarks already mentioned.  

The phonon-electron interaction is one of the key elements in the ubiquitous modern electronics based on 
semiconductor physics. Sound in solids can be viewed as positive atomic nuclei swaying around their 
equilibrium positions, which influences the movement of the negatively charged electrons. Here, the phonons are 
the correct quantum-theoretical description of these oscillations; of course, they cannot appear in vacuum outside 
the solids. 

In the scattering of electrons off protons, quarks act like point particles existing inside the protons. Trying to 
isolate a quark is similarly unsuccessful as trying to isolate a magnetic pole by breaking a magnet. In case of the 
magnet, a north pole and a south pole result at the breakpoint and thus two smaller magnets, but never an isolated 
pole. Similarly, the isolation of a quark can be compared to the task to cut the end piece of an elastic strap in 
such a way that only the end piece is obtained, without a minimal piece of the strap. 

Obviously, structure quanta cannot appear as objects in the vacuum, and they should not be presented as such. In 
that sense, they are not particles. Nonetheless, within their respective context, they can act like real particles. 
Possible designations, other than “structure quanta”, are “virtual particles” or “quasiparticles”. 

3 The types of interactions  

Gravitation acts on everything that exists in the cosmos. Within the general theory of relativity, it is described as 
local change of the space-time with a local variation of the density. 

The most important interaction for all chemical and biological processes is the electromagnetic interaction, 
which is produced by electric charge. It can be described as a local gauge theory with the U(1) group as gauge 
group. 

These two interactions have, in principle, an infinite range and therefore can be perceived in everyday life. The 
other two interactions have very short ranges and can be experienced only at the level of microphysics. 

The strong interaction is a gauge theory with the SU(3) group as gauge group; it provides for cohesion of the 
atomic nuclei. 

The weak interaction with gauge group SU(2) induces, among others, the decay of neutrons and instable nuclei. 

While one may try to pressure also gravitation into the structure of a local gauge interaction, the various groups 
to be used in these attempts cannot be compact like the gauge groups of the three other interaction types. 
However, despite decades-long efforts, no satisfying quantization of the general theory of relativity could be 
constructed. As already mentioned, arguments based on the fundamentals of quantum theory suggest that 
gravitation is to be understood as the local manifestations of a quantum cosmology. Accordingly, a quantization 
and, in particular, a gauge-theoretical formulation seem to be redundant for the general theory of relativity. A 



different situation applies, if only a linear approximation of this theory is considered, as in case of the 
gravitational waves, for which quantization is possible. 10  

As was discussed in a previous article11, the emergence of the two gauge groups U(1), SU(2) and their 
mathematical structure can be deduced from the basic considerations regarding the fundamental structure of 
quantum theory, that is, the absolute, abstract and cosmologically defined quantum information, the AQI bits of 
the protyposis. 

It is important to note that the AQI bits are devoid of any specific ‚meaning‘. In the discussion of Black Holes 
the „information paradox“ plays an important role12. After the transit of an object through the horizon of a Black 
Hole, at most the mass, angular momentum, and charge of that object can be recovered, whereas all other sorts of 
significance associated with the object are irretrievably lost. This loss of meaningful information is referred to as 
the information paradox. What is left out of consideration here is the fact that the objectizable part of the AQI 
bits constituting the object can still be determined. However, this refers to free-of-meaning quantum bits. 

This discussion shows that the distinction between free-of-meaning quantum information, being an objective 
quantity, and meaning, always comprising subjective connotations, is essential; without such a distinction 
problems of comprehension will arise by necessity.  

The information paradox is due to the mix-up of the two notions – which to avoid the different designations have 
been introduced. Objects falling into a black hole take the AQI bits of the protyposis – i.e. the quantum 
information they represent – with them into the interior. However, any ‘significance’ resulting from the context 
of their description gets lost, because any context is interrupted by the existence of the horizon. So, the abstract 
and free-of-meaning information of the AQI bits survives this process, whereas the significance does not survive.  

As already stated, the AQI bits are, for mathematical reasons alone, the simplest possible structures within 
quantum physics. Disregarding such insights into the quantum theoretical contexts, one will obviously be 
inclined to search the simple in the spatially small, in line with the millenia old tradition.  

• The discussion about the fundamentals of the description of nature is aggravated by the ancient prejudice that 
simplicity is to be found in spatial smallness. 

And yet, the quantum theory has demonstrated since more than 100 years that this is an error.13 If one tries to 
approach the problem of interactions with the prejudice of smallest elementary components, there will be no 
solution. Things look more promising using the protyposis concept, which leads to the actually simplest 
structures, and which, by the way, has also allowed us to explain, in an almost trivial way, the information 
behaviour at and in black holes.14 

The various attempts to unify the three (non-gravitational) interactions within a single one, by introducing 
increasingly larger groups (which contain the mentioned three local gauge groups as sub-groups), do not at all 
lead to simple structures. Instead, an inflation of increasingly complex particle constructs can be witnessed, 
where the exemplars – in case they can be generated experimentally at all – prove to be ever less durable, ever 
more energy-rich and more complicated. We definitely do not deny the possibility to generate systems 
experimentally of such a complexity as predicted by those theories. However, the case of actually simple and 
thus fundamental structures is a different matter. 

For the derivation of the interaction structures, in which the force quanta can appear as real particles in space and 
time, i.e., for the weak and the electromagnetic interaction with the gauge groups SU(2) and U(1), respectively, a 
recourse to the complex number structure at the core of quantum theory was not needed.15   

However, that structure is essential if all three gauge groups are to be treated. Then it has to be considered that 
the quantum-theoretical description of nature amounts to a kind of “double-entry bookkeeping”, accounting for 
both the ‘facts’ and the ‘possibilities’. Crucially to this end is the use the complex numbers, which, in a way, 
may be interpreted as a duplication of the real numbers. 
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4 Why is quantum theory defined on the field of the complex 

numbers? 

In a talk at a conference dedicated to the 100th birthday of Erwin Schrödinger, Chen Ning Yang16 quoted from a 
lecture on quantum mechanics given by Paul Dirac. The topic here is the non-commutability of operators, often 
presented as the essential feature of quantum theory in the literature. Dirac said  

 “The question arises whether the noncommutation is really the main new idea of quantum mechanics. Previously I 
always thought it was but recently I have begun to doubt it and to think that maybe from the physical point of view, 
the noncommutation is not the only important idea and there is perhaps some deeper idea, some deeper change in our 
ordinary concepts which is brought about by quantum mechanics.” 

Dirac then continued, according to Yang, as follows:  

“So if one asks what is the main feature of quantum mechanics, I feel inclined now to say that it is not 
noncommutative algebra. It is the existence of probability amplitudes which underlie all atomic processes. Now a 
probability amplitude is related to experiment but only partially. The square of its modulus is something that we can 
observe. That is the probability which the experimental people get. But besides that there is a phase, a number of 
modulus unity which can modify without affecting the square of the modulus. And this phase is all important because 
it is the source of all interference phenomena but its physical significance is obscure.“ 

How can the emergence of these complex numbers in physics be rationalized? Let us recall that classical physics 
is the physics of objects and facts. Its measured values are facts and thus represented by real numbers.17     

However, in everyday life it is natural that not only facts but also those possibilities we expect cause effects. 
Quantum theory as the “physics of possibilities”18 is to be understood as taking into account the finding that even 
in the inanimate nature future possibilities can create effects in the present. 

Also within classical physics, possibilities are of course discussed. However, here possibilities are merely the 
consequence of insufficient knowledge of an ‘observer’ describing the system. Irrespective of whether they are 
known, the facts are entirely fixed and well defined according to the model of classical physics. For example, 
this applies to the statistical description in classical statistical thermodynamics. 

It should be obvious though that the insufficient knowledge of an observer does not in any way affect the actual 
behaviour of the system. 

This is in striking contrast to the possibilities in quantum theory, which can be designated as real or actual, 
because they can actually effectuate something. It is therefore important for their description that they are not 
represented on the same number axis as the real numbers labelling the facts. 

Here further explanation is required. Possibilities generating actual effects refer necessarily to the future. That is, 
here the time evolution of the wave function is crucial, and the use of complex wave functions becomes 
mandatory. In the time-independent (static) mode, by contrast, wave functions can be and often are real 
functions, as already a cursory look at textbooks in quantum theory will show. For example, the energy 
eigenstates of the harmonic oscillator are real functions, as is the ground state of the hydrogen atom (the 
degenerate energy eigenstates can be chosen real as well, though then they are no longer eigenfunctions of the z-
component of the angular momentum). In principle, any square integrable (and continuous) real function can be 
interpreted as a permissible wave function. The time-dependent Schrödinger equation (TDSE), governing the 
time-evolution of a wave function, explicitly introduces the imaginary unit i. As a consequence, even an initially 
real wave function becomes complex with the onset of the time evolution. Stationary states, that is, energy 
eigenstates are a special case, as here the time-dependence of the wave function consists in a trivial complex 
phase factor. A stationary state represents the presence of a fact, namely, the fact that the system assumes a 
precise energy value given by the respective energy eigenvalue. This fact does not change in the continuous 
time-evolution according to the TDSE.   

• The possibilities that generate effects require something like a “second number axis” for the mathematical 
description.  

However, a simple transition into a two-dimensional real description would not be adequate here, since in a real 
plane the two axes would be completely independent from each other. 

For possibilities, however, it is crucial that some of them can become factual in the course of time. So for 
quantum theory the two envisaged axes must somehow be related to each other. 
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Another aspect of quantum theory is its henadic, i.e. at unity aiming, structure. Here, a mathematical structure is 
needed that from the outset guarantees such a holistic behaviour. 

• The solution for the structure required here had early been found in the re-interpretation of the two-
dimensional real plane as a one-dimensional complex number ray; in addition it was supposed that the state 
functions, which constitute the behaviour of the quantum system, must, in principle, be complex 
differentiable.  

The usual wave functions are complex-valued functions of real variables, such as the spatial coordinates or the 
momentum coordinates. The requirement of complex differentiability analytic behaviour ensures the analytic 
behaviour of these functions. This property is necessary to obtain a henadic structure. Note that also the 
scattering matrix is required to be analytic.  

The basic importance of analyticity of the state functions has been recognized earlier. In 1959, Eugene Wigner 
gave his famous talk on “The Unreasonable Effectiveness of Mathematics in the Natural Sciences“. 

In striving for an answer to Wigner’s assessment one has to consider the following: Mathematics can be 
understood as the science of possible structures, and physics as the science of the structures acting in nature. 
Structures in physics? emerge as a result of deeming unessential and ignoring certain aspects of the particular 
phenomena in the particular situations. Accordingly, it is hardly surprising that the structures dealt with in 
physics, if actually understood, can be treated mathematically.  

In the mentioned talk Wigner characterizes the quantum-physical contexts as follows: 19 

Let us not forget that the Hilbert space of quantum mechanics is the complex Hilbert space, with a Hermitean scalar 
product. Surely to the unpreoccupied mind, complex numbers are far from natural or simple and they cannot be 
suggested by physical observations. Furthermore, the use of complex numbers is in this case not a calculational trick 
of applied mathematics but comes close to being a necessity in the formulation of the laws of quantum mechanics. 
Finally, it now begins to appear that not only numbers but so-called analytic functions are destined to play a decisive 
role in the formulation of quantum theory. 

The requirement of analyticity is important for the understanding the fundamental features. Structures deriving 
thereof appear, for example, in the so-called second quantization, briefly addressed below. For practical 
purposes, though, that requirement needs not rigorously be maintained. Often it is useful to simplify problems by 
applying suitable limits. Such mathematical simplifications, possibly even allowing for exact solutions, may, 
among others, serve pedagogical purposes as to better illustrate essential physical structures and the behaviour of 
quantum systems. A well-known textbook example is the particle moving in a rectangular potential well. While 
this model allows one to understand important physical aspects, such as the behaviour of energy eigenvalues for 
confined particles, other features get lost as a consequence of the limits supposed in the model. In nature, there 
are no such things as sharp edges or infinitely high potential walls, however easily and sensibly they may be 
postulated in mathematical contexts. Obviously, such „unnatural“ postulates can and will be at odds with the 
requirement of analyticity. . 

Often it proves useful to allow coordinates to become complex. In scattering theory virtual particles are referred 
to as off-mass-shell. Here E2 or p2 become negative, which means imaginary energy and momentum values. 

Moreover, imaginary coordinates allow one to change between a quantum and classical description. According 
to the paper „Complex Coordinates and Quantum Mechanics” by F. Strocchi: 

„For example, the correspondence between Poisson brackets and commutators is not arbitrary: the Poisson bracket of 
two "classical" phase functions is in fact the mean value of the commutator between the corresponding operators.“ 20  

This shows once again that quantum theory is the more accurate description of the reality, and classical physics 
providing an averaging thereof.  

The use of complex coordinates has proven useful in the field of atomic and molecular physics as well. 21  In the 
treatment of metastable states, for example, the energy aquires an imaginary component. Due to the quantum 
theoretical equivalence of the spatial and momentum representations, analytical behaviour is supposed with 
regard to the spatial coordinates as well. 22 

The analytical structure is the mathematical equivalent to holism, being the distinctive feature of quantum 
theory.  
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Very generally speaking, a holism is also found in the so-called Lie groups. These groups are characterized by 
the fact that a small neighbourhood of the identity element is sufficient to derive from it the whole group 
structure. In this sense, Lie groups can be seen as a generalization of analytic functions.  

An advantage of the analytical functions is that they allow for a representation of stationary states such that a 
complex phase is changing while an associated expectation value remains constant. Then possibilities may 
change for a system, while the factually recognizable state might appear as unchanged. In other words, 
possibilities can be in stationary modes. Such conditions could be designated as virtual changes that factually 
appear as static. 

Since quantum theory is certainly a genuine scientific theory, i.e., it represents a deterministic structure, the 
description of the quantum systems has to be made by using functions that allow for such deterministic structure 
by satisfying a differential equation with regard to space and time coordinates.  

Here it has to be recalled that in quantum theory the deterministic development refers to possibilities, but not 
facts, which may become real within the scope compatible with the possibilities. 

• Probability calculation is carried out in quantum theory by exceeding the field of real numbers and working 
likewise with complex numbers. 

This expansion of the numbers is obtained by adding the imaginary unit ›i‹, the square root of ›-1‹. In this way, 
quantum theory takes into account that these real possibilities achieve effects and may influence each other, 
since they are objective and not merely reflecting the lack of knowledge of an observer. For example, an 
interaction of possibilities may make otherwise possible facts impossible.  

As the well-known double-slit experiment shows, a photon or an electron behaves differently depending on 
whether it can move controlled or uncontrolled through the slits. When both slits are open and no control of the 
passage is in place, then there is the effect that certain spots on a detection screen will not be reached, although 
the very same spots are accessed by the particles if only one of the slits (irrespective which) is open. 

For a description in terms of a differential equation for complex functions, the functions must be complex 
differentiable. This means they have to comply with the Cauchy-Riemann differential equations: 

Be f(z) a function of the complex variables z = x + iy,  

 f(z) = f(x,y) = f(x + iy) = u(x,y) + iv(x,y) (1) 

 

It is then necessary for the differentiability of f(z) that the following applies for the two real functions u and v: 

It is generally known that a complex differentiable function can be differentiated as often as desired. It can thus 

be developed into a power series and is then designated as analytical function: 

f (z) = an
n=0

∑ zn                                                                                   (3) 

• This series expansion is not only an interesting mathematical structure; it also has a physical equivalence in 
the form of the so-called second quantization.  

The essential feature of an analytical function is that any piece of it defines the entire function.  Therefore in 
mathematics the analytical functions represent the holism that distinguishes quantum theory from classical 
physics 

The structure of the so-called “second quantization”, which however represents the basic structure of quantum 
theory at all23, becomes visible in the clearest way, when the Fock space representation is used.  Here the state 
space H of a quantum field is represented as an infinite sum over the state spaces Hn of n quantum particles.  

H = ⊕
n=0

∞
H n                                                                                       (4)   
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The n-particle state space H
n is the tensor product of n one-particle state spaces H1 

Depending on whether it is a Bose or a Fermi field, the state spaces Hn are still to be symmetrized or anti-
symmetrized.  

H n = ⊗
1

n

H 1 = H 1 ⊗ H 1 ⊗ ...⊗H 1                                                              (5) 

The changes of the states of a quantum field are obtained by generation or annihilation of those particles that 
were introduced as field quanta. 

This series structure represents a central aspect of quantum theory. Essentially in such a way a quantum particle 
can be constructed from quantum bits, the actually simplest quantum structures.(see also appendix 1)24  

5 Interaction implies a division into separate spaces 

• To introduce interaction it is furthermore necessary to ‘break up’ the henadic (= aiming for unity) structure of 
quantum theory, since ultimately the term ‘interaction’ is useful only for things separated from each other.25  

Interaction implies separated objects. Accordingly, it is the natural structure of classical physics, representing 
reality as an accumulation of separated objects. 

Since the beginning of theoretical mechanics it has been known that for the description of the interaction of two 
point masses, each mass requires its own coordinate space.   

The simple case of two interacting particles in space is usually treated by re-writing the problem in terms of 
center-of-gravity and relative coordinates. Here it is easily overlooked that each particle has a space of spatial 
and momentum coordinates of its own. According to our view and in nature both particles are placed at different 
locations in the same space, while in the mathematical description each occupies its own ‘cosmos’ of 
coordinates. The action of force due the other particle arises, so to say, from another cosmos. Therefore, it is 
necessary for the description of the interaction of a particle with an outer force to provide – in addition to the 
Minkowski space – another space from which the description of force action can be constructed.  

In the following it will be shown how the interaction terms of the three gauge groups are created from this 
separation and, in addition, from the involvement of the possibilities, for which quantum theory shows that, in 
addition to facts, they can generate effects as well. 

It has already been explained that the mathematical structure of quantum theory is incompatible with a concept 
of interaction.26 Even if a description was started with two separate objects, the tensor product structure of 
quantum theory would ensure that a new unity would be created – and the idea of interaction makes no sense for 
a unity. This means that a separation into two objects is mandatory in the sense of the dynamic layering 
structure,27 and the tensor product structure of quantum theory must not be fully applied. Since the very 
beginnings of quantum theory Bohr has been insisting that classical physics is indispensable in order to speak 
about quantum theoretical results. Moreover, a precise analysis shows that a strict concept of interaction can only 
be formulated within the mathematical framework of classical physics. On the other hand, it is evident that the 
existence of all the objects described by classical physics can only be explained by quantum theory. This means 
that for a good description of nature we need both parts of physics, classical physics and quantum physics. This 
mutual relationship is referred to as “dynamic layering structure” or, referring to the dynamics in these 
phenomena, as “dynamic layering process”. 

Of course, while insisting in the quantum theoretical unity, one should not throw the baby out with the bath 
water. For example, in the treatment of the proton-electron interaction in a hydrogen atom one normally resorts 
to the classical Coulomb potential, governing the motion of the electron. Obviously, possible tensor structures 
are entirely irrelevant here. This applies to atomic and molecular structures, in general, where for good reasons 
the pertinent approximation procedures avoid an exaggerated „unity picture“. In all electromagnetic interactions, 
such as encountered in chemistry, the interaction strengths are much too small as to envisage the generation of 
massive particles; and also effects of quantum field theory are so small that they safely can be neglected in most 
cases.  
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In a very accurate description of the hydrogen atom, though, it becomes apparent that it is not simply a „two-
particle system“. Then the Coulomb field of nucleus and electron proves to be an ensemble of virtual photons 
and virtual electron-positron pairs. For this system, now to be described as a whole, the notion of interaction 
becomes problematic.  

6 Actually elementary structures establish the structure of the space-time  

Carl Friedrich v. Weizsäcker was the first to postulate that the three dimensions of the physical or position space 
are a necessary consequence of quantum theory. 28 

Nowadays, this understanding can be formulated as follows: All states of a quantum bit of the protyposis span an 
irreducible representation of the two groups U(1) and SU(2). 

It follows from the theory of the compact groups that all irreducible representations of such a group can be 
realized in subspaces of that Hilbert space generated by the square-integrable functions on the parameter space of 
this group. For this purpose, it is necessary to consider this group as its own maximal homogeneous space.29 

The SU(2) group manifold is the three-dimensional surface of a four-dimensional sphere. Accordingly, like in 
Weizsäcker’s Ur-theory, the protyposis concept entails that the SU(2) group establishes the mathematical 
description of the cosmic position space. 

This assumption is supported by the group-theoretical feature implying that everything that can be represented 
by quantum bits, i.e. all quantum particles and quantum fields, can be represented by functions on this maximal 
homogeneous space of the group SU(2).  

From three physically plausible assumptions a cosmology follows that matches the observational data well and 
from which the validity of Einstein’s equations can be concluded.30 For this cosmology, it is sufficient to demand 
the following: 

• The Planck relation of an inverse proportionality between characteristic length and energy is generally 
applicable. (With increasing energy, the [Compton] wavelength decreases.) 

• There is a distinguished speed (which is usually designated as vacuum speed of light c). 
• The first law of thermodynamics is valid (dU + pdV = 0). 

From these requirements, the definition of a universal cosmic time results, and, further on, the Robertson-Walker 
metrics of a closed cosmos that is expanding with speed of light referred to this time. 31 

7 Introduction of interaction 

Interaction is a conception valid for distinct objects in space, i.e., particles or fields. Quantum field theory shows 
that quantum fields can be understood as assemblages of quantum particles. Thus the essence of interaction can 
be understood if the interaction of particles has been explained.  

As was established some time ago, there is a way in which quantum particles can be constructed from quantum 
bits. A short exposition is given in the appendix 1. 

We have already discussed the specific status of gravitation, which is expediently not to be formulated as gauge 
theory. In the following, the three other types of interaction shall be treated. 

To get access to these types of interaction, we have started from a quantum particle in the Minkowski space.32 
The quantum particles shall be defined as elementary objects. This means that no possible internal structures 
need to be taken into account. Their states can be characterized according to irreducible representations of the 
Poincaré group. 

Normally, the starting point for the description of interaction is the interaction-free movement. In case of a free 
particle, the possible translations are generated by the momenta. In the quantum-theoretical description, their 
generators are the derivatives referred to the space-time coordinates of the Minkowski space. 

Pk= -i ∂/∂xk 

                                                        
28 Weizsäcker, C F v, (1955, 1958, 1985, 2006)  
29 Görnitz, Th. (1988a), (1988b)   
30 Görnitz, Th. (2011b)   
31 Görnitz, Th. (2011b)  
32 Görnitz, Th. (2014) 

(6) 



Now one can reflect about how the concrete form of the momentum changes, when there are forces. 

7.1 Electromagnetic and weak interaction 
The treatment of electromagnetic, weak, and strong interaction in terms of local gauge interactions with the 
gauge groups U(1), SU(2), and SU(3), respectively, has proven empirically well founded for a long time. At the 
core of this description is the replacement of the usual derivative by a covariant derivative, 

∂/∂xk      �    ∂/∂xk + Aa
kTa                                                                          (7) 

Here the Ta denotes the generators of the Lie algebra of the respective gauge groups. As mentioned in Chapter 1, 
so far there is the issue why exactly these three gauge groups are required and how the transition to the covariant 
derivatives can be rationalized. Another issue is the fact that the gauge bosons for U(1) and SU(2) can appear as 
real objects in the vacuum, whereas the gauge bosons of SU(3) have to be described as virtual particles, that is, 
structure quanta. 

As explained in Chapter 5 and discussed, at greater length, in a previous paper33, in establishing interaction the 
AQI bits forming the particles are associated with another ‚cosmos of description‘ than the AQI bits generating 
the interaction.  

Addressing this point, we have demonstrated that the U(1) and SU(2) group generators associated with 
displacements in the maximal homogenous space of these groups, i.e. the group manifold itself, must augment 
the momentum generators of the Minkowski space.  

The parameter space of the U(1) group is one-dimensional, that of the SU(2) group three-dimensional. The 
related generators of the Lie algebras shall be designated using ι  and τa. The generators τa of the SU(2) can be 
represented by the well-known Pauli-matrices. (see e.g. appendix 2)  

As is generally known, a group element in the neighbourhood of the group unit can be approximated for the U(1) 
group by 

g = exp{i A ι } ≈ 1 + i A ι                                                                             (8) 
and for the SU(2) group by 

g = exp{iΣ Ba τ
a

 } ≈ 1 + i Σ Ba τ
a                                                                 (9) 

if the series expansion of the exponential function is truncated after the first power. 

• From the coupling of the momentum in the Minkowski space, i.e. the translations that lead to a change of 
location there, with the “translations” in the geometry of the interaction partner, a substitution results for the 
momentum operator with the following form: 

Pk → -i∂/∂xk + g1 A
k ι + g2 B

k
a τ

a
                                                                      (10) 

with g1 and g2 being two coupling constants, which cannot be further specified from the considerations made so 
far.     

As has been known for a long time, the descriptions of the weak and of the electromagnetic interaction in the 
Minkowski space lead to this structure.  

• The protyposis concept of fundamental and simplest quantum structures affords an explanation of exactly this 
form of the interaction. 

However, in the case of strong interaction, these considerations are not yet sufficient.  

7.2 Strong interaction 
• The strong interaction differs from the weak and the electromagnetic interaction in that here all ideas of 

interacting particles collapse. 

The only thing known for sure about quarks and gluons is that they do not exist, at least not as free objects in 
space and time. 

• Of course, quarks and gluons exist as incorporated structures, and without them the internal structure and the 
interaction of the hadrons would remain incomprehensible. 

The attempt to isolate a quark leads to the formation of a quark-antiquark pair at the ‘breakpoint’. This means 
when trying to release a quark, always a meson will be produced, i.e. a quark-antiquark structure. It remains to 
be established that quarks and gluons have only virtual existence.  
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• However, one of the fundamentals of quantum theory being that not only facts but also possibilities can 
create real effects, it must be anticipated that the quark-gluon structures are very significant in the description 
of the physical processes. 

Of course, they have to be understood as genuine quantum phenomena, reflecting the possibility characteristics 
of quantum theory. 

In contrast to the weak and electromagnetic interaction, where forces are transmitted by real quanta in space and 
time, we here have to rely exclusively on virtual quanta. 

In analogy to the extension of real to complex numbers in the full quantum description, this suggests to postulate 
a duplication of the structures associated with the interactions based on real quanta. In the “real quanta 
interactions” we have an SU(2)×U(1) structure, which then would have to be duplicated. In appendix 2 it is 
shown that the four-dimensional group SU(2)×U(1) is a subgroup of the group SU(3).34 

So the question arises how the transition from the SU(2)×U(1) structure to a SU(2)×U(1) plus SU(2)×U(1) 
structure is to be interpreted. The answer is simple: We are led exactly to the SU(3) structure.  

The SU(3) group is an eight-dimensional compact group, and a parameterization of SU(3) can be obtained which 
matches the duplicated structure of the SU(2)×U(1) groups.  

Such a structure is called the Cartan decomposition.35 For a group G with the Lie algebra G and a subgroup K 
with Lie algebra K, the coset being P, there is the Cartan decomposition of the Lie algebra G if  

G = K + P                                                                                         (11) 
with      

ki ∈ K    and    pi ∈ P                                                               (12) 

and if the corresponding structures hold for the elements      

ki,kj
 ∈ K;      pi, pj

 ∈ K;     ki, pj
 ∈ P;                                                    (13) 

In case K and P have the same dimension, P can, as manifold, be a copy of K. In this case the structure (13) is 
the same as in the relations (14) for real and imaginary numbers: 

real × real = real ,  imaginary × imaginary = real  and real × imaginary = imaginary                   (14) 

The eight parameters of the SU(3) shall be designated by the vector (α,β,γ,θ,a,b,c,φ). We follow Byrd’s 
representation: 36 

Dropping the redundancies, we arrive at the following product representation,  

D(α,β,γ,θ,a,b,c,φ) = e(iλ3α)e(iλ2β)e(iλ3γ)e(iλ5θ)e(iλ3a)e(iλ2b)e(iλ3c)e(iλ8φ)                       (15) 

for an arbitrary element D of SU(3). This can be written as  

D(α,β,γ,θ,a,b,c,φ) = D(2)(α,β,γ)e(iλ5θ)D(2)(a,b,c) e(iλ8φ)                                     (16) 

where again the D denotes an arbitrary element of SU(3), and D(2) is an arbitrary element of SU(2) as a subset of 

SU(3). The λi are 3×3-matrices, therefore also D and D(2) are 3×3-matrices (see appendix 2). The elements with 
λ1, λ2, λ3, and λ8 belong to the subgroup K and from it with λ5 the elements of the coset P can be created. The two 

exponential functions e(iλ8φ) and e(iλ5θ)describe the two U(1) manifolds as subgroup and coset in SU(3), 
respectively.  

The parametrization chosen by Byrd is referred to as „non-canonical“. The canonical parametrization uses the 
exponential mapping of the Lie algebra onto the group as indicated in Eqs. (8) and (9). In the latter case, there is 
a convenient relation for the parameters in a one-parameter subgroup: 

D(α) D(β) = D(α + β)                                                                            (17) 

With regard to the different parametrizations, one may refer, for example, to the following hints by Gilmore37:  
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“This parameterization [the canonical] is obtained by the EXPonential mapping of the Lie algebra onto the Lie group. 
In this parameterization, every straight line through the origin of the algebra exponentiates onto a one-dimensional 
abelian subgroup. 

To obviate the impression that noncanonical parameterizations are anathema, we propose now to deal with a number 
of them. This is not an empty academic exercise: we have a number of motivations for such a discussion. 

1. Mathematical reasons. For one thing, it is often difficult to construct the canonical parameterization of a classical 
Lie group using the EXPonential mapping. It is even more difficult to construct canonical matrix representations of a 
group by the canonical mapping of the algebra's representations onto the group's representations with the 
EXPonential mapping. 

2. Physical reasons. We will eventually want to associate physical opera-tors with elements in Lie algebras and 
groups. For instance, it is often useful to associate shift-up and shift-down operators like J+ and J_ with operators in a 
Hamiltonian which cause transitions to higher and lower energy levels. Then it becomes necessary to compute matrix 
elements of ordered operator products within particular representations. The existence of noncanonical 
parameterizations allows the construction of generating functions for products of operators in normal and 
symmetrized orderings.” 

In a particular case, one will chose the parametrization that is best adapted to the situation. Often this will be a 
canonical parametrization. The advantage of Byrd’s non-canonical parametrization is that it makes manifest the 
SU(3) product structure according to Eq. (16), being central for our considerations, and, moreover, the analogy 
to the formula (14).   

Since SU(3) is semi-simple, it has only one connected component. Thus the given parameterization in (16) 
covers the whole group.  

• Formula (16) is crucial for our considerations. It indicates precisely how the protyposis concept leads us to 
the SU(3) structure of the strong interaction.  

To establish the ‚acting possibilities‘ in quantum theory a duplication of the manifold of real numbers had to be 
introduced together with the Cartan-type product structure (14). This entailed the complex numbers. In an 
entirely analogous way, the space of the protyposis AQI bits associated with the interaction, that is the 
SU(2)×U(1) manifold, is to be duplicated and endowed with the Cartan structure (13). As a result, one obtains an 
additional interaction, which, being quantal, acts only via virtual or structure quanta, and is represented by the 
SU(3) gauge group. 

The formula (10) for the electromagnetic and weak interaction is to be supplemented with the generators λa of 
SU(3) yielding  

Pk → -i∂/∂xk + g1 A
k 
ι + g2 B

k
a τ

a
 + g3 C

k
a λ

a                                                           (18) 

It should be emphasized once more that the SU(3) structure can be explained as resulting from a quantum-
theoretically motivated duplication, analogous to the transition from real to complex, which applies to the case in 
which the interaction is mediated by virtual rather than real quanta. Accordingly, quarks and gluons cannot 
appear as free particles in vacuum, just like phonons cannot appear outside a solid. Nonetheless, all such 
quantum structures produce real effects.  

Appendix 1 Quantum particles from the quantum bits of the protyposis 

• A quantum particle is defined by a fixed mass and a certain spin, and by the fact that all its states span an 
irreducible representation of the Poincaré group. 

First it is necessary for this mathematical structure to define operators for the generation and annihilation of the 
quantum bits. One of the symmetries at these quantum bits is the complex conjugation, which effects a so-called 
anti-linear representation. So it could be seen very early38 that it is useful to allow linear representation by 
duplication of the state space. Weizsäcker spoke about urs and anti-urs in this connection. 

The operator generating a quantum bit shall be      , and the operator annihilating a quantum bit shall be    . . 

To construct also massive particles, it is necessary to introduce parabose commutation rules for the generation 
and annihilation operators 
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The state index s or r or t can range from 1 to 4.  

The effect on the vacuum of the protyposis then results as: 

with |Ω> being the vacuum of protyposis, p the parabose order, p=1 the Bose statistics.  

The vacuum in the Minkowski space, the Lorenz vacuum |0〉, is an eigenstate of the Poincaré group with zero 
mass, energy and spin. While all other irreducible representations of the Poincaré group span an infinite-
dimensional state space, the Lorenz vacuum |0〉 corresponds to a representation with a one-dimensional state 
space.  

• This vacuum can be characterized by the finding that no particle is to be found at each of the infinitely many 
points in the Minkowski space.   

 

The particle vacuum in the Minkowski space shall serve as simple example for the relation of quantization to the 
analytical functions. This vacuum is – like a “normal” particle state – also an eigenstate of the Poincaré group. It 
proves to be an infinite sum of states of quantum bits, which are generated from |Ω>, the vacuum of the quantum 
bits of protyposis.  

 
For the Lorenz vacuum, the annihilation of a quantum bit corresponds to the generation of the related anti-qubit. 

 
In the same way, but much more complicated than the vacuum of the particles, the state of a quantum particle 
with rest mass can be represented as a Fock representation of states of quantum bits. An example39 shall be the 
state of rest (momentum = 0) of a fermion with mass m and spin ½ in z–direction.  
Due to increasing complexity, processing by means of a computer and with an adapted notation seems to be 
appropriate. For this purpose, notation has been adapted to an application in mathematica®40 (with “Erzeuger” = 
generator, “Vernichter” = annihilator). 

With this computer-adapted notation, the ten generators of the Poincaré group are given the following form:  

Translations: 
P1 = (-w[2,3]-f[3,2]-w[1,4]-f[4,1] -d[1,2]-d[2,1]-d[4,3]-d[3,4])/2 
P2 = I*(-w[2,3] +f[3,2] +w[1,4]-f[4,1] -d[1,2] +d[2,1]-d[4,3] +d[3,4])/2 
P3 = (-w[1,3]-f[3,1] +w[2,4] +f[4,2] -d[1,1] +d[2,2]-d[3,3] +d[4,4])/2 
P0 = (-w[1,3]-f[3,1]-w[2,4]-f[4,2] -d[1,1]-d[2,2]-d[3,3]-d[4,4])/2 
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Boosts:  
M10 = I*(w[1,4]-f[4,1] +w[2,3]-f[3,2])/2 
M20 =   (w[1,4] +f[4,1]-w[2,3]-f[3,2])/2 
M30 = I*(w[1,3]-f[3,1]-w[2,4] +f[4,2])/2 
 
Rotations:  
M32 =   (d[2,1] +d[1,2]-d[3,4]-d[4,3])/2 
M21 =   (d[1,1]-d[2,2]-d[3,3] +d[4,4])/2 
M31 = I*(d[2,1]-d[1,2]-d[3,4] +d[4,3])/2 
 

The state of this massive particle turns out as infinite sum over differently weighed states of quantum bits. In this 
specific case, they comply with parabose symmetry. The parabose order p[0] is greater than 1. (Only massless 
objects can be generated with Bose symmetry). The symbols p[i] designate powers of the individual operators. 
The symbol * is used to identify the commutative product of numbers, and ** is used to identify a non-
commutative product of the generation and annihilation operators. As an example we give the state of a massive 
fermion with mass m at rest. The momentum at rest is P0=m, P1=P2=P3=0, and the spin in z-direction is sz=1/2. 
The expression has two parts: 

Appendix 2: Remarks on the structure of the SU(3) group 

In his paper “The Geometry of SU(3)”41 Mark Byrd gives an overview on the geometry of the group manifold of 
SU(3).  

With the “Euler angle” parameterization, presented by him, we can connect the structure deriving from the 
protyposis concept with this gauge group.  

The Lie-algebra of the group is often represented by the 8 Gell-Mann matrices, named λi. They provide the most 
common representation in terms of 3 × 3 hermitian, traceless matrices.  

Abb. 1: The Gell-Mann matrices of the Lie algebra of SU(3) 
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The matrices λ1, λ2 and λ3 are the Pauli matrices of SU(2), extended by a third line and column. The matrix λ8, 
the generator of U(1) , commutes with  λ1, λ2 and λ3. Accordingly, SU(2)×U(1) is a subgroup of SU(3). 

The whole set commutation relations can be listed in tabular form as follows: 

Abb. 2: The entries in the table are given by commuting the element in the first column with the element in 

the top row: [element from first column, element from top row] = element in table at the 

corresponding position. 
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